Evaluate
2
Factor
2
Quiz
Arithmetic
5 problems similar to:
\frac { 8 } { 3 - \sqrt { 7 } } - \frac { 6 } { 2 \sqrt { 7 } - 5 }
Share
Copied to clipboard
\frac{8\left(3+\sqrt{7}\right)}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{6}{2\sqrt{7}-5}
Rationalize the denominator of \frac{8}{3-\sqrt{7}} by multiplying numerator and denominator by 3+\sqrt{7}.
\frac{8\left(3+\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}-\frac{6}{2\sqrt{7}-5}
Consider \left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(3+\sqrt{7}\right)}{9-7}-\frac{6}{2\sqrt{7}-5}
Square 3. Square \sqrt{7}.
\frac{8\left(3+\sqrt{7}\right)}{2}-\frac{6}{2\sqrt{7}-5}
Subtract 7 from 9 to get 2.
4\left(3+\sqrt{7}\right)-\frac{6}{2\sqrt{7}-5}
Divide 8\left(3+\sqrt{7}\right) by 2 to get 4\left(3+\sqrt{7}\right).
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{\left(2\sqrt{7}-5\right)\left(2\sqrt{7}+5\right)}
Rationalize the denominator of \frac{6}{2\sqrt{7}-5} by multiplying numerator and denominator by 2\sqrt{7}+5.
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{\left(2\sqrt{7}\right)^{2}-5^{2}}
Consider \left(2\sqrt{7}-5\right)\left(2\sqrt{7}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{2^{2}\left(\sqrt{7}\right)^{2}-5^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{4\left(\sqrt{7}\right)^{2}-5^{2}}
Calculate 2 to the power of 2 and get 4.
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{4\times 7-5^{2}}
The square of \sqrt{7} is 7.
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{28-5^{2}}
Multiply 4 and 7 to get 28.
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{28-25}
Calculate 5 to the power of 2 and get 25.
4\left(3+\sqrt{7}\right)-\frac{6\left(2\sqrt{7}+5\right)}{3}
Subtract 25 from 28 to get 3.
4\left(3+\sqrt{7}\right)-2\left(2\sqrt{7}+5\right)
Divide 6\left(2\sqrt{7}+5\right) by 3 to get 2\left(2\sqrt{7}+5\right).
12+4\sqrt{7}-2\left(2\sqrt{7}+5\right)
Use the distributive property to multiply 4 by 3+\sqrt{7}.
12+4\sqrt{7}-\left(4\sqrt{7}+10\right)
Use the distributive property to multiply 2 by 2\sqrt{7}+5.
12+4\sqrt{7}-4\sqrt{7}-10
To find the opposite of 4\sqrt{7}+10, find the opposite of each term.
12-10
Combine 4\sqrt{7} and -4\sqrt{7} to get 0.
2
Subtract 10 from 12 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}