Solve for x
x = \frac{\sqrt{6121} + 19}{80} \approx 1.21546025
x=\frac{19-\sqrt{6121}}{80}\approx -0.74046025
Graph
Share
Copied to clipboard
\frac{8}{3}x^{2}-\frac{19}{15}x-2.4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{19}{15}\right)±\sqrt{\left(-\frac{19}{15}\right)^{2}-4\times \frac{8}{3}\left(-2.4\right)}}{2\times \frac{8}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{8}{3} for a, -\frac{19}{15} for b, and -2.4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{19}{15}\right)±\sqrt{\frac{361}{225}-4\times \frac{8}{3}\left(-2.4\right)}}{2\times \frac{8}{3}}
Square -\frac{19}{15} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{19}{15}\right)±\sqrt{\frac{361}{225}-\frac{32}{3}\left(-2.4\right)}}{2\times \frac{8}{3}}
Multiply -4 times \frac{8}{3}.
x=\frac{-\left(-\frac{19}{15}\right)±\sqrt{\frac{361}{225}+\frac{128}{5}}}{2\times \frac{8}{3}}
Multiply -\frac{32}{3} times -2.4 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{19}{15}\right)±\sqrt{\frac{6121}{225}}}{2\times \frac{8}{3}}
Add \frac{361}{225} to \frac{128}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{19}{15}\right)±\frac{\sqrt{6121}}{15}}{2\times \frac{8}{3}}
Take the square root of \frac{6121}{225}.
x=\frac{\frac{19}{15}±\frac{\sqrt{6121}}{15}}{2\times \frac{8}{3}}
The opposite of -\frac{19}{15} is \frac{19}{15}.
x=\frac{\frac{19}{15}±\frac{\sqrt{6121}}{15}}{\frac{16}{3}}
Multiply 2 times \frac{8}{3}.
x=\frac{\sqrt{6121}+19}{\frac{16}{3}\times 15}
Now solve the equation x=\frac{\frac{19}{15}±\frac{\sqrt{6121}}{15}}{\frac{16}{3}} when ± is plus. Add \frac{19}{15} to \frac{\sqrt{6121}}{15}.
x=\frac{\sqrt{6121}+19}{80}
Divide \frac{19+\sqrt{6121}}{15} by \frac{16}{3} by multiplying \frac{19+\sqrt{6121}}{15} by the reciprocal of \frac{16}{3}.
x=\frac{19-\sqrt{6121}}{\frac{16}{3}\times 15}
Now solve the equation x=\frac{\frac{19}{15}±\frac{\sqrt{6121}}{15}}{\frac{16}{3}} when ± is minus. Subtract \frac{\sqrt{6121}}{15} from \frac{19}{15}.
x=\frac{19-\sqrt{6121}}{80}
Divide \frac{19-\sqrt{6121}}{15} by \frac{16}{3} by multiplying \frac{19-\sqrt{6121}}{15} by the reciprocal of \frac{16}{3}.
x=\frac{\sqrt{6121}+19}{80} x=\frac{19-\sqrt{6121}}{80}
The equation is now solved.
\frac{8}{3}x^{2}-\frac{19}{15}x-2.4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8}{3}x^{2}-\frac{19}{15}x-2.4-\left(-2.4\right)=-\left(-2.4\right)
Add 2.4 to both sides of the equation.
\frac{8}{3}x^{2}-\frac{19}{15}x=-\left(-2.4\right)
Subtracting -2.4 from itself leaves 0.
\frac{8}{3}x^{2}-\frac{19}{15}x=2.4
Subtract -2.4 from 0.
\frac{\frac{8}{3}x^{2}-\frac{19}{15}x}{\frac{8}{3}}=\frac{2.4}{\frac{8}{3}}
Divide both sides of the equation by \frac{8}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{19}{15}}{\frac{8}{3}}\right)x=\frac{2.4}{\frac{8}{3}}
Dividing by \frac{8}{3} undoes the multiplication by \frac{8}{3}.
x^{2}-\frac{19}{40}x=\frac{2.4}{\frac{8}{3}}
Divide -\frac{19}{15} by \frac{8}{3} by multiplying -\frac{19}{15} by the reciprocal of \frac{8}{3}.
x^{2}-\frac{19}{40}x=\frac{9}{10}
Divide 2.4 by \frac{8}{3} by multiplying 2.4 by the reciprocal of \frac{8}{3}.
x^{2}-\frac{19}{40}x+\left(-\frac{19}{80}\right)^{2}=\frac{9}{10}+\left(-\frac{19}{80}\right)^{2}
Divide -\frac{19}{40}, the coefficient of the x term, by 2 to get -\frac{19}{80}. Then add the square of -\frac{19}{80} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{40}x+\frac{361}{6400}=\frac{9}{10}+\frac{361}{6400}
Square -\frac{19}{80} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{40}x+\frac{361}{6400}=\frac{6121}{6400}
Add \frac{9}{10} to \frac{361}{6400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{80}\right)^{2}=\frac{6121}{6400}
Factor x^{2}-\frac{19}{40}x+\frac{361}{6400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{80}\right)^{2}}=\sqrt{\frac{6121}{6400}}
Take the square root of both sides of the equation.
x-\frac{19}{80}=\frac{\sqrt{6121}}{80} x-\frac{19}{80}=-\frac{\sqrt{6121}}{80}
Simplify.
x=\frac{\sqrt{6121}+19}{80} x=\frac{19-\sqrt{6121}}{80}
Add \frac{19}{80} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}