Evaluate
\frac{2048}{615}\approx 3.330081301
Factor
\frac{2 ^ {11}}{3 \cdot 5 \cdot 41} = 3\frac{203}{615} = 3.330081300813008
Share
Copied to clipboard
\frac{\frac{8}{15}}{\frac{5}{32}\left(\frac{36}{40}+\frac{5}{40}\right)}
Least common multiple of 10 and 8 is 40. Convert \frac{9}{10} and \frac{1}{8} to fractions with denominator 40.
\frac{\frac{8}{15}}{\frac{5}{32}\times \frac{36+5}{40}}
Since \frac{36}{40} and \frac{5}{40} have the same denominator, add them by adding their numerators.
\frac{\frac{8}{15}}{\frac{5}{32}\times \frac{41}{40}}
Add 36 and 5 to get 41.
\frac{\frac{8}{15}}{\frac{5\times 41}{32\times 40}}
Multiply \frac{5}{32} times \frac{41}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{8}{15}}{\frac{205}{1280}}
Do the multiplications in the fraction \frac{5\times 41}{32\times 40}.
\frac{\frac{8}{15}}{\frac{41}{256}}
Reduce the fraction \frac{205}{1280} to lowest terms by extracting and canceling out 5.
\frac{8}{15}\times \frac{256}{41}
Divide \frac{8}{15} by \frac{41}{256} by multiplying \frac{8}{15} by the reciprocal of \frac{41}{256}.
\frac{8\times 256}{15\times 41}
Multiply \frac{8}{15} times \frac{256}{41} by multiplying numerator times numerator and denominator times denominator.
\frac{2048}{615}
Do the multiplications in the fraction \frac{8\times 256}{15\times 41}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}