Solve for x
x = \frac{451}{150} = 3\frac{1}{150} \approx 3.006666667
Graph
Share
Copied to clipboard
\frac{4}{5}\times \frac{15}{8}\times \frac{7}{8}+\frac{9}{10}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{4\times 15}{5\times 8}\times \frac{7}{8}+\frac{9}{10}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Multiply \frac{4}{5} times \frac{15}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{40}\times \frac{7}{8}+\frac{9}{10}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Do the multiplications in the fraction \frac{4\times 15}{5\times 8}.
\frac{3}{2}\times \frac{7}{8}+\frac{9}{10}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Reduce the fraction \frac{60}{40} to lowest terms by extracting and canceling out 20.
\frac{3\times 7}{2\times 8}+\frac{9}{10}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Multiply \frac{3}{2} times \frac{7}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{21}{16}+\frac{9}{10}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Do the multiplications in the fraction \frac{3\times 7}{2\times 8}.
\frac{105}{80}+\frac{72}{80}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Least common multiple of 16 and 10 is 80. Convert \frac{21}{16} and \frac{9}{10} to fractions with denominator 80.
\frac{105+72}{80}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Since \frac{105}{80} and \frac{72}{80} have the same denominator, add them by adding their numerators.
\frac{177}{80}=\left(\frac{125}{1000}+\frac{1}{2}\right)x+\frac{3}{9}
Add 105 and 72 to get 177.
\frac{177}{80}=\left(\frac{1}{8}+\frac{1}{2}\right)x+\frac{3}{9}
Reduce the fraction \frac{125}{1000} to lowest terms by extracting and canceling out 125.
\frac{177}{80}=\left(\frac{1}{8}+\frac{4}{8}\right)x+\frac{3}{9}
Least common multiple of 8 and 2 is 8. Convert \frac{1}{8} and \frac{1}{2} to fractions with denominator 8.
\frac{177}{80}=\frac{1+4}{8}x+\frac{3}{9}
Since \frac{1}{8} and \frac{4}{8} have the same denominator, add them by adding their numerators.
\frac{177}{80}=\frac{5}{8}x+\frac{3}{9}
Add 1 and 4 to get 5.
\frac{177}{80}=\frac{5}{8}x+\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{5}{8}x+\frac{1}{3}=\frac{177}{80}
Swap sides so that all variable terms are on the left hand side.
\frac{5}{8}x=\frac{177}{80}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
\frac{5}{8}x=\frac{531}{240}-\frac{80}{240}
Least common multiple of 80 and 3 is 240. Convert \frac{177}{80} and \frac{1}{3} to fractions with denominator 240.
\frac{5}{8}x=\frac{531-80}{240}
Since \frac{531}{240} and \frac{80}{240} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{8}x=\frac{451}{240}
Subtract 80 from 531 to get 451.
x=\frac{451}{240}\times \frac{8}{5}
Multiply both sides by \frac{8}{5}, the reciprocal of \frac{5}{8}.
x=\frac{451\times 8}{240\times 5}
Multiply \frac{451}{240} times \frac{8}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{3608}{1200}
Do the multiplications in the fraction \frac{451\times 8}{240\times 5}.
x=\frac{451}{150}
Reduce the fraction \frac{3608}{1200} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}