Skip to main content
Solve for y
Tick mark Image
Graph

Share

8\times \frac{3}{4}y-\frac{8}{1}\times \frac{1}{2}=\frac{8}{1}\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Anything divided by one gives itself.
\frac{8\times 3}{4}y-\frac{8}{1}\times \frac{1}{2}=\frac{8}{1}\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Express 8\times \frac{3}{4} as a single fraction.
\frac{24}{4}y-\frac{8}{1}\times \frac{1}{2}=\frac{8}{1}\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Multiply 8 and 3 to get 24.
6y-\frac{8}{1}\times \frac{1}{2}=\frac{8}{1}\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Divide 24 by 4 to get 6.
6y-8\times \frac{1}{2}=\frac{8}{1}\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Anything divided by one gives itself.
6y-\frac{8}{2}=\frac{8}{1}\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Multiply 8 and \frac{1}{2} to get \frac{8}{2}.
6y-4=\frac{8}{1}\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Divide 8 by 2 to get 4.
6y-4=8\times \frac{7}{84}+\frac{8}{1}\times \frac{1}{2}
Anything divided by one gives itself.
6y-4=8\times \frac{1}{12}+\frac{8}{1}\times \frac{1}{2}
Reduce the fraction \frac{7}{84} to lowest terms by extracting and canceling out 7.
6y-4=\frac{8}{12}+\frac{8}{1}\times \frac{1}{2}
Multiply 8 and \frac{1}{12} to get \frac{8}{12}.
6y-4=\frac{2}{3}+\frac{8}{1}\times \frac{1}{2}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
6y-4=\frac{2}{3}+8\times \frac{1}{2}
Anything divided by one gives itself.
6y-4=\frac{2}{3}+\frac{8}{2}
Multiply 8 and \frac{1}{2} to get \frac{8}{2}.
6y-4=\frac{2}{3}+4
Divide 8 by 2 to get 4.
6y-4=\frac{2}{3}+\frac{12}{3}
Convert 4 to fraction \frac{12}{3}.
6y-4=\frac{2+12}{3}
Since \frac{2}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
6y-4=\frac{14}{3}
Add 2 and 12 to get 14.
6y=\frac{14}{3}+4
Add 4 to both sides.
6y=\frac{14}{3}+\frac{12}{3}
Convert 4 to fraction \frac{12}{3}.
6y=\frac{14+12}{3}
Since \frac{14}{3} and \frac{12}{3} have the same denominator, add them by adding their numerators.
6y=\frac{26}{3}
Add 14 and 12 to get 26.
y=\frac{\frac{26}{3}}{6}
Divide both sides by 6.
y=\frac{26}{3\times 6}
Express \frac{\frac{26}{3}}{6} as a single fraction.
y=\frac{26}{18}
Multiply 3 and 6 to get 18.
y=\frac{13}{9}
Reduce the fraction \frac{26}{18} to lowest terms by extracting and canceling out 2.