Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{8\left(\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)}
Rationalize the denominator of \frac{8}{\sqrt{2}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{5}.
\frac{8\left(\sqrt{2}-\sqrt{5}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(\sqrt{2}-\sqrt{5}\right)}{2-5}
Square \sqrt{2}. Square \sqrt{5}.
\frac{8\left(\sqrt{2}-\sqrt{5}\right)}{-3}
Subtract 5 from 2 to get -3.
\frac{8\sqrt{2}-8\sqrt{5}}{-3}
Use the distributive property to multiply 8 by \sqrt{2}-\sqrt{5}.