Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8\sqrt{11}+7\sqrt{2}\right)\left(8\sqrt{11}+7\sqrt{2}\right)}{\left(8\sqrt{11}-7\sqrt{2}\right)\left(8\sqrt{11}+7\sqrt{2}\right)}
Rationalize the denominator of \frac{8\sqrt{11}+7\sqrt{2}}{8\sqrt{11}-7\sqrt{2}} by multiplying numerator and denominator by 8\sqrt{11}+7\sqrt{2}.
\frac{\left(8\sqrt{11}+7\sqrt{2}\right)\left(8\sqrt{11}+7\sqrt{2}\right)}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Consider \left(8\sqrt{11}-7\sqrt{2}\right)\left(8\sqrt{11}+7\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8\sqrt{11}+7\sqrt{2}\right)^{2}}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Multiply 8\sqrt{11}+7\sqrt{2} and 8\sqrt{11}+7\sqrt{2} to get \left(8\sqrt{11}+7\sqrt{2}\right)^{2}.
\frac{64\left(\sqrt{11}\right)^{2}+112\sqrt{11}\sqrt{2}+49\left(\sqrt{2}\right)^{2}}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8\sqrt{11}+7\sqrt{2}\right)^{2}.
\frac{64\times 11+112\sqrt{11}\sqrt{2}+49\left(\sqrt{2}\right)^{2}}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
The square of \sqrt{11} is 11.
\frac{704+112\sqrt{11}\sqrt{2}+49\left(\sqrt{2}\right)^{2}}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Multiply 64 and 11 to get 704.
\frac{704+112\sqrt{22}+49\left(\sqrt{2}\right)^{2}}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
To multiply \sqrt{11} and \sqrt{2}, multiply the numbers under the square root.
\frac{704+112\sqrt{22}+49\times 2}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{704+112\sqrt{22}+98}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Multiply 49 and 2 to get 98.
\frac{802+112\sqrt{22}}{\left(8\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Add 704 and 98 to get 802.
\frac{802+112\sqrt{22}}{8^{2}\left(\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Expand \left(8\sqrt{11}\right)^{2}.
\frac{802+112\sqrt{22}}{64\left(\sqrt{11}\right)^{2}-\left(-7\sqrt{2}\right)^{2}}
Calculate 8 to the power of 2 and get 64.
\frac{802+112\sqrt{22}}{64\times 11-\left(-7\sqrt{2}\right)^{2}}
The square of \sqrt{11} is 11.
\frac{802+112\sqrt{22}}{704-\left(-7\sqrt{2}\right)^{2}}
Multiply 64 and 11 to get 704.
\frac{802+112\sqrt{22}}{704-\left(-7\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-7\sqrt{2}\right)^{2}.
\frac{802+112\sqrt{22}}{704-49\left(\sqrt{2}\right)^{2}}
Calculate -7 to the power of 2 and get 49.
\frac{802+112\sqrt{22}}{704-49\times 2}
The square of \sqrt{2} is 2.
\frac{802+112\sqrt{22}}{704-98}
Multiply 49 and 2 to get 98.
\frac{802+112\sqrt{22}}{606}
Subtract 98 from 704 to get 606.