Solve for x
x=16.5
Graph
Share
Copied to clipboard
\frac{8+x}{34+16\times 4}=0.25
Add 2 and 32 to get 34.
\frac{8+x}{34+64}=0.25
Multiply 16 and 4 to get 64.
\frac{8+x}{98}=0.25
Add 34 and 64 to get 98.
\frac{4}{49}+\frac{1}{98}x=0.25
Divide each term of 8+x by 98 to get \frac{4}{49}+\frac{1}{98}x.
\frac{1}{98}x=0.25-\frac{4}{49}
Subtract \frac{4}{49} from both sides.
\frac{1}{98}x=\frac{1}{4}-\frac{4}{49}
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{1}{98}x=\frac{49}{196}-\frac{16}{196}
Least common multiple of 4 and 49 is 196. Convert \frac{1}{4} and \frac{4}{49} to fractions with denominator 196.
\frac{1}{98}x=\frac{49-16}{196}
Since \frac{49}{196} and \frac{16}{196} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{98}x=\frac{33}{196}
Subtract 16 from 49 to get 33.
x=\frac{33}{196}\times 98
Multiply both sides by 98, the reciprocal of \frac{1}{98}.
x=\frac{33\times 98}{196}
Express \frac{33}{196}\times 98 as a single fraction.
x=\frac{3234}{196}
Multiply 33 and 98 to get 3234.
x=\frac{33}{2}
Reduce the fraction \frac{3234}{196} to lowest terms by extracting and canceling out 98.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}