Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8+i\right)\left(8+i\right)}{\left(8-i\right)\left(8+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+i.
\frac{\left(8+i\right)\left(8+i\right)}{8^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+i\right)\left(8+i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 8+8i+8i+i^{2}}{65}
Multiply complex numbers 8+i and 8+i like you multiply binomials.
\frac{8\times 8+8i+8i-1}{65}
By definition, i^{2} is -1.
\frac{64+8i+8i-1}{65}
Do the multiplications in 8\times 8+8i+8i-1.
\frac{64-1+\left(8+8\right)i}{65}
Combine the real and imaginary parts in 64+8i+8i-1.
\frac{63+16i}{65}
Do the additions in 64-1+\left(8+8\right)i.
\frac{63}{65}+\frac{16}{65}i
Divide 63+16i by 65 to get \frac{63}{65}+\frac{16}{65}i.
Re(\frac{\left(8+i\right)\left(8+i\right)}{\left(8-i\right)\left(8+i\right)})
Multiply both numerator and denominator of \frac{8+i}{8-i} by the complex conjugate of the denominator, 8+i.
Re(\frac{\left(8+i\right)\left(8+i\right)}{8^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+i\right)\left(8+i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 8+8i+8i+i^{2}}{65})
Multiply complex numbers 8+i and 8+i like you multiply binomials.
Re(\frac{8\times 8+8i+8i-1}{65})
By definition, i^{2} is -1.
Re(\frac{64+8i+8i-1}{65})
Do the multiplications in 8\times 8+8i+8i-1.
Re(\frac{64-1+\left(8+8\right)i}{65})
Combine the real and imaginary parts in 64+8i+8i-1.
Re(\frac{63+16i}{65})
Do the additions in 64-1+\left(8+8\right)i.
Re(\frac{63}{65}+\frac{16}{65}i)
Divide 63+16i by 65 to get \frac{63}{65}+\frac{16}{65}i.
\frac{63}{65}
The real part of \frac{63}{65}+\frac{16}{65}i is \frac{63}{65}.