Evaluate
\frac{5}{13}+\frac{14}{13}i\approx 0.384615385+1.076923077i
Real Part
\frac{5}{13} = 0.38461538461538464
Share
Copied to clipboard
\frac{\left(8+2i\right)\left(4+6i\right)}{\left(4-6i\right)\left(4+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+6i.
\frac{\left(8+2i\right)\left(4+6i\right)}{4^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+2i\right)\left(4+6i\right)}{52}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6i^{2}}{52}
Multiply complex numbers 8+2i and 4+6i like you multiply binomials.
\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right)}{52}
By definition, i^{2} is -1.
\frac{32+48i+8i-12}{52}
Do the multiplications in 8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right).
\frac{32-12+\left(48+8\right)i}{52}
Combine the real and imaginary parts in 32+48i+8i-12.
\frac{20+56i}{52}
Do the additions in 32-12+\left(48+8\right)i.
\frac{5}{13}+\frac{14}{13}i
Divide 20+56i by 52 to get \frac{5}{13}+\frac{14}{13}i.
Re(\frac{\left(8+2i\right)\left(4+6i\right)}{\left(4-6i\right)\left(4+6i\right)})
Multiply both numerator and denominator of \frac{8+2i}{4-6i} by the complex conjugate of the denominator, 4+6i.
Re(\frac{\left(8+2i\right)\left(4+6i\right)}{4^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+2i\right)\left(4+6i\right)}{52})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6i^{2}}{52})
Multiply complex numbers 8+2i and 4+6i like you multiply binomials.
Re(\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right)}{52})
By definition, i^{2} is -1.
Re(\frac{32+48i+8i-12}{52})
Do the multiplications in 8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right).
Re(\frac{32-12+\left(48+8\right)i}{52})
Combine the real and imaginary parts in 32+48i+8i-12.
Re(\frac{20+56i}{52})
Do the additions in 32-12+\left(48+8\right)i.
Re(\frac{5}{13}+\frac{14}{13}i)
Divide 20+56i by 52 to get \frac{5}{13}+\frac{14}{13}i.
\frac{5}{13}
The real part of \frac{5}{13}+\frac{14}{13}i is \frac{5}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}