Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8+2i\right)\left(4+6i\right)}{\left(4-6i\right)\left(4+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+6i.
\frac{\left(8+2i\right)\left(4+6i\right)}{4^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+2i\right)\left(4+6i\right)}{52}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6i^{2}}{52}
Multiply complex numbers 8+2i and 4+6i like you multiply binomials.
\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right)}{52}
By definition, i^{2} is -1.
\frac{32+48i+8i-12}{52}
Do the multiplications in 8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right).
\frac{32-12+\left(48+8\right)i}{52}
Combine the real and imaginary parts in 32+48i+8i-12.
\frac{20+56i}{52}
Do the additions in 32-12+\left(48+8\right)i.
\frac{5}{13}+\frac{14}{13}i
Divide 20+56i by 52 to get \frac{5}{13}+\frac{14}{13}i.
Re(\frac{\left(8+2i\right)\left(4+6i\right)}{\left(4-6i\right)\left(4+6i\right)})
Multiply both numerator and denominator of \frac{8+2i}{4-6i} by the complex conjugate of the denominator, 4+6i.
Re(\frac{\left(8+2i\right)\left(4+6i\right)}{4^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+2i\right)\left(4+6i\right)}{52})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6i^{2}}{52})
Multiply complex numbers 8+2i and 4+6i like you multiply binomials.
Re(\frac{8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right)}{52})
By definition, i^{2} is -1.
Re(\frac{32+48i+8i-12}{52})
Do the multiplications in 8\times 4+8\times \left(6i\right)+2i\times 4+2\times 6\left(-1\right).
Re(\frac{32-12+\left(48+8\right)i}{52})
Combine the real and imaginary parts in 32+48i+8i-12.
Re(\frac{20+56i}{52})
Do the additions in 32-12+\left(48+8\right)i.
Re(\frac{5}{13}+\frac{14}{13}i)
Divide 20+56i by 52 to get \frac{5}{13}+\frac{14}{13}i.
\frac{5}{13}
The real part of \frac{5}{13}+\frac{14}{13}i is \frac{5}{13}.