Evaluate
\frac{787}{200}=3.935
Factor
\frac{787}{2 ^ {3} \cdot 5 ^ {2}} = 3\frac{187}{200} = 3.935
Share
Copied to clipboard
\begin{array}{l}\phantom{200)}\phantom{1}\\200\overline{)787}\\\end{array}
Use the 1^{st} digit 7 from dividend 787
\begin{array}{l}\phantom{200)}0\phantom{2}\\200\overline{)787}\\\end{array}
Since 7 is less than 200, use the next digit 8 from dividend 787 and add 0 to the quotient
\begin{array}{l}\phantom{200)}0\phantom{3}\\200\overline{)787}\\\end{array}
Use the 2^{nd} digit 8 from dividend 787
\begin{array}{l}\phantom{200)}00\phantom{4}\\200\overline{)787}\\\end{array}
Since 78 is less than 200, use the next digit 7 from dividend 787 and add 0 to the quotient
\begin{array}{l}\phantom{200)}00\phantom{5}\\200\overline{)787}\\\end{array}
Use the 3^{rd} digit 7 from dividend 787
\begin{array}{l}\phantom{200)}003\phantom{6}\\200\overline{)787}\\\phantom{200)}\underline{\phantom{}600\phantom{}}\\\phantom{200)}187\\\end{array}
Find closest multiple of 200 to 787. We see that 3 \times 200 = 600 is the nearest. Now subtract 600 from 787 to get reminder 187. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }187
Since 187 is less than 200, stop the division. The reminder is 187. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}