Evaluate
\frac{78}{77}\approx 1.012987013
Factor
\frac{2 \cdot 3 \cdot 13}{7 \cdot 11} = 1\frac{1}{77} = 1.0129870129870129
Share
Copied to clipboard
\begin{array}{l}\phantom{77)}\phantom{1}\\77\overline{)78}\\\end{array}
Use the 1^{st} digit 7 from dividend 78
\begin{array}{l}\phantom{77)}0\phantom{2}\\77\overline{)78}\\\end{array}
Since 7 is less than 77, use the next digit 8 from dividend 78 and add 0 to the quotient
\begin{array}{l}\phantom{77)}0\phantom{3}\\77\overline{)78}\\\end{array}
Use the 2^{nd} digit 8 from dividend 78
\begin{array}{l}\phantom{77)}01\phantom{4}\\77\overline{)78}\\\phantom{77)}\underline{\phantom{}77\phantom{}}\\\phantom{77)9}1\\\end{array}
Find closest multiple of 77 to 78. We see that 1 \times 77 = 77 is the nearest. Now subtract 77 from 78 to get reminder 1. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1
Since 1 is less than 77, stop the division. The reminder is 1. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}