Solve for y
y = \frac{\sqrt{107081} + 333}{56} \approx 11.789863096
y=\frac{333-\sqrt{107081}}{56}\approx 0.102994047
Graph
Share
Copied to clipboard
4y\left(77+1\right)-6\left(5-2y\right)-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12y, the least common multiple of 3,2y,4,3y.
4y\times 78-6\left(5-2y\right)-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Add 77 and 1 to get 78.
312y-6\left(5-2y\right)-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Multiply 4 and 78 to get 312.
312y-30+12y-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Use the distributive property to multiply -6 by 5-2y.
324y-30-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Combine 312y and 12y to get 324y.
324y-30-\left(12y^{2}-9y\right)=4\left(1+4y^{2}\right)
Use the distributive property to multiply 3y by 4y-3.
324y-30-12y^{2}+9y=4\left(1+4y^{2}\right)
To find the opposite of 12y^{2}-9y, find the opposite of each term.
333y-30-12y^{2}=4\left(1+4y^{2}\right)
Combine 324y and 9y to get 333y.
333y-30-12y^{2}=4+16y^{2}
Use the distributive property to multiply 4 by 1+4y^{2}.
333y-30-12y^{2}-4=16y^{2}
Subtract 4 from both sides.
333y-34-12y^{2}=16y^{2}
Subtract 4 from -30 to get -34.
333y-34-12y^{2}-16y^{2}=0
Subtract 16y^{2} from both sides.
333y-34-28y^{2}=0
Combine -12y^{2} and -16y^{2} to get -28y^{2}.
-28y^{2}+333y-34=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-333±\sqrt{333^{2}-4\left(-28\right)\left(-34\right)}}{2\left(-28\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -28 for a, 333 for b, and -34 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-333±\sqrt{110889-4\left(-28\right)\left(-34\right)}}{2\left(-28\right)}
Square 333.
y=\frac{-333±\sqrt{110889+112\left(-34\right)}}{2\left(-28\right)}
Multiply -4 times -28.
y=\frac{-333±\sqrt{110889-3808}}{2\left(-28\right)}
Multiply 112 times -34.
y=\frac{-333±\sqrt{107081}}{2\left(-28\right)}
Add 110889 to -3808.
y=\frac{-333±\sqrt{107081}}{-56}
Multiply 2 times -28.
y=\frac{\sqrt{107081}-333}{-56}
Now solve the equation y=\frac{-333±\sqrt{107081}}{-56} when ± is plus. Add -333 to \sqrt{107081}.
y=\frac{333-\sqrt{107081}}{56}
Divide -333+\sqrt{107081} by -56.
y=\frac{-\sqrt{107081}-333}{-56}
Now solve the equation y=\frac{-333±\sqrt{107081}}{-56} when ± is minus. Subtract \sqrt{107081} from -333.
y=\frac{\sqrt{107081}+333}{56}
Divide -333-\sqrt{107081} by -56.
y=\frac{333-\sqrt{107081}}{56} y=\frac{\sqrt{107081}+333}{56}
The equation is now solved.
4y\left(77+1\right)-6\left(5-2y\right)-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12y, the least common multiple of 3,2y,4,3y.
4y\times 78-6\left(5-2y\right)-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Add 77 and 1 to get 78.
312y-6\left(5-2y\right)-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Multiply 4 and 78 to get 312.
312y-30+12y-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Use the distributive property to multiply -6 by 5-2y.
324y-30-3y\left(4y-3\right)=4\left(1+4y^{2}\right)
Combine 312y and 12y to get 324y.
324y-30-\left(12y^{2}-9y\right)=4\left(1+4y^{2}\right)
Use the distributive property to multiply 3y by 4y-3.
324y-30-12y^{2}+9y=4\left(1+4y^{2}\right)
To find the opposite of 12y^{2}-9y, find the opposite of each term.
333y-30-12y^{2}=4\left(1+4y^{2}\right)
Combine 324y and 9y to get 333y.
333y-30-12y^{2}=4+16y^{2}
Use the distributive property to multiply 4 by 1+4y^{2}.
333y-30-12y^{2}-16y^{2}=4
Subtract 16y^{2} from both sides.
333y-30-28y^{2}=4
Combine -12y^{2} and -16y^{2} to get -28y^{2}.
333y-28y^{2}=4+30
Add 30 to both sides.
333y-28y^{2}=34
Add 4 and 30 to get 34.
-28y^{2}+333y=34
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-28y^{2}+333y}{-28}=\frac{34}{-28}
Divide both sides by -28.
y^{2}+\frac{333}{-28}y=\frac{34}{-28}
Dividing by -28 undoes the multiplication by -28.
y^{2}-\frac{333}{28}y=\frac{34}{-28}
Divide 333 by -28.
y^{2}-\frac{333}{28}y=-\frac{17}{14}
Reduce the fraction \frac{34}{-28} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{333}{28}y+\left(-\frac{333}{56}\right)^{2}=-\frac{17}{14}+\left(-\frac{333}{56}\right)^{2}
Divide -\frac{333}{28}, the coefficient of the x term, by 2 to get -\frac{333}{56}. Then add the square of -\frac{333}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{333}{28}y+\frac{110889}{3136}=-\frac{17}{14}+\frac{110889}{3136}
Square -\frac{333}{56} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{333}{28}y+\frac{110889}{3136}=\frac{107081}{3136}
Add -\frac{17}{14} to \frac{110889}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{333}{56}\right)^{2}=\frac{107081}{3136}
Factor y^{2}-\frac{333}{28}y+\frac{110889}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{333}{56}\right)^{2}}=\sqrt{\frac{107081}{3136}}
Take the square root of both sides of the equation.
y-\frac{333}{56}=\frac{\sqrt{107081}}{56} y-\frac{333}{56}=-\frac{\sqrt{107081}}{56}
Simplify.
y=\frac{\sqrt{107081}+333}{56} y=\frac{333-\sqrt{107081}}{56}
Add \frac{333}{56} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}