Evaluate
\frac{381}{50}=7.62
Factor
\frac{3 \cdot 127}{2 \cdot 5 ^ {2}} = 7\frac{31}{50} = 7.62
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)762}\\\end{array}
Use the 1^{st} digit 7 from dividend 762
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)762}\\\end{array}
Since 7 is less than 100, use the next digit 6 from dividend 762 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)762}\\\end{array}
Use the 2^{nd} digit 6 from dividend 762
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)762}\\\end{array}
Since 76 is less than 100, use the next digit 2 from dividend 762 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)762}\\\end{array}
Use the 3^{rd} digit 2 from dividend 762
\begin{array}{l}\phantom{100)}007\phantom{6}\\100\overline{)762}\\\phantom{100)}\underline{\phantom{}700\phantom{}}\\\phantom{100)9}62\\\end{array}
Find closest multiple of 100 to 762. We see that 7 \times 100 = 700 is the nearest. Now subtract 700 from 762 to get reminder 62. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }62
Since 62 is less than 100, stop the division. The reminder is 62. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}