Evaluate
\frac{759}{61}\approx 12.442622951
Factor
\frac{3 \cdot 11 \cdot 23}{61} = 12\frac{27}{61} = 12.442622950819672
Share
Copied to clipboard
\begin{array}{l}\phantom{61)}\phantom{1}\\61\overline{)759}\\\end{array}
Use the 1^{st} digit 7 from dividend 759
\begin{array}{l}\phantom{61)}0\phantom{2}\\61\overline{)759}\\\end{array}
Since 7 is less than 61, use the next digit 5 from dividend 759 and add 0 to the quotient
\begin{array}{l}\phantom{61)}0\phantom{3}\\61\overline{)759}\\\end{array}
Use the 2^{nd} digit 5 from dividend 759
\begin{array}{l}\phantom{61)}01\phantom{4}\\61\overline{)759}\\\phantom{61)}\underline{\phantom{}61\phantom{9}}\\\phantom{61)}14\\\end{array}
Find closest multiple of 61 to 75. We see that 1 \times 61 = 61 is the nearest. Now subtract 61 from 75 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{61)}01\phantom{5}\\61\overline{)759}\\\phantom{61)}\underline{\phantom{}61\phantom{9}}\\\phantom{61)}149\\\end{array}
Use the 3^{rd} digit 9 from dividend 759
\begin{array}{l}\phantom{61)}012\phantom{6}\\61\overline{)759}\\\phantom{61)}\underline{\phantom{}61\phantom{9}}\\\phantom{61)}149\\\phantom{61)}\underline{\phantom{}122\phantom{}}\\\phantom{61)9}27\\\end{array}
Find closest multiple of 61 to 149. We see that 2 \times 61 = 122 is the nearest. Now subtract 122 from 149 to get reminder 27. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }27
Since 27 is less than 61, stop the division. The reminder is 27. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}