Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

-2m^{2}-\frac{5}{2}m+\frac{75}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\left(-2\right)\times \frac{75}{4}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -\frac{5}{2} for b, and \frac{75}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\left(-2\right)\times \frac{75}{4}}}{2\left(-2\right)}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}+8\times \frac{75}{4}}}{2\left(-2\right)}
Multiply -4 times -2.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}+150}}{2\left(-2\right)}
Multiply 8 times \frac{75}{4}.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{625}{4}}}{2\left(-2\right)}
Add \frac{25}{4} to 150.
m=\frac{-\left(-\frac{5}{2}\right)±\frac{25}{2}}{2\left(-2\right)}
Take the square root of \frac{625}{4}.
m=\frac{\frac{5}{2}±\frac{25}{2}}{2\left(-2\right)}
The opposite of -\frac{5}{2} is \frac{5}{2}.
m=\frac{\frac{5}{2}±\frac{25}{2}}{-4}
Multiply 2 times -2.
m=\frac{15}{-4}
Now solve the equation m=\frac{\frac{5}{2}±\frac{25}{2}}{-4} when ± is plus. Add \frac{5}{2} to \frac{25}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=-\frac{15}{4}
Divide 15 by -4.
m=-\frac{10}{-4}
Now solve the equation m=\frac{\frac{5}{2}±\frac{25}{2}}{-4} when ± is minus. Subtract \frac{25}{2} from \frac{5}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{5}{2}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out 2.
m=-\frac{15}{4} m=\frac{5}{2}
The equation is now solved.
-2m^{2}-\frac{5}{2}m+\frac{75}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2m^{2}-\frac{5}{2}m+\frac{75}{4}-\frac{75}{4}=-\frac{75}{4}
Subtract \frac{75}{4} from both sides of the equation.
-2m^{2}-\frac{5}{2}m=-\frac{75}{4}
Subtracting \frac{75}{4} from itself leaves 0.
\frac{-2m^{2}-\frac{5}{2}m}{-2}=-\frac{\frac{75}{4}}{-2}
Divide both sides by -2.
m^{2}+\left(-\frac{\frac{5}{2}}{-2}\right)m=-\frac{\frac{75}{4}}{-2}
Dividing by -2 undoes the multiplication by -2.
m^{2}+\frac{5}{4}m=-\frac{\frac{75}{4}}{-2}
Divide -\frac{5}{2} by -2.
m^{2}+\frac{5}{4}m=\frac{75}{8}
Divide -\frac{75}{4} by -2.
m^{2}+\frac{5}{4}m+\left(\frac{5}{8}\right)^{2}=\frac{75}{8}+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{5}{4}m+\frac{25}{64}=\frac{75}{8}+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{5}{4}m+\frac{25}{64}=\frac{625}{64}
Add \frac{75}{8} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{5}{8}\right)^{2}=\frac{625}{64}
Factor m^{2}+\frac{5}{4}m+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{5}{8}\right)^{2}}=\sqrt{\frac{625}{64}}
Take the square root of both sides of the equation.
m+\frac{5}{8}=\frac{25}{8} m+\frac{5}{8}=-\frac{25}{8}
Simplify.
m=\frac{5}{2} m=-\frac{15}{4}
Subtract \frac{5}{8} from both sides of the equation.