Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

75+5aa=0
Multiply both sides of the equation by 4.
75+5a^{2}=0
Multiply a and a to get a^{2}.
5a^{2}=-75
Subtract 75 from both sides. Anything subtracted from zero gives its negation.
a^{2}=\frac{-75}{5}
Divide both sides by 5.
a^{2}=-15
Divide -75 by 5 to get -15.
a=\sqrt{15}i a=-\sqrt{15}i
The equation is now solved.
75+5aa=0
Multiply both sides of the equation by 4.
75+5a^{2}=0
Multiply a and a to get a^{2}.
5a^{2}+75=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\times 5\times 75}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and 75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 5\times 75}}{2\times 5}
Square 0.
a=\frac{0±\sqrt{-20\times 75}}{2\times 5}
Multiply -4 times 5.
a=\frac{0±\sqrt{-1500}}{2\times 5}
Multiply -20 times 75.
a=\frac{0±10\sqrt{15}i}{2\times 5}
Take the square root of -1500.
a=\frac{0±10\sqrt{15}i}{10}
Multiply 2 times 5.
a=\sqrt{15}i
Now solve the equation a=\frac{0±10\sqrt{15}i}{10} when ± is plus.
a=-\sqrt{15}i
Now solve the equation a=\frac{0±10\sqrt{15}i}{10} when ± is minus.
a=\sqrt{15}i a=-\sqrt{15}i
The equation is now solved.