Solve for n
n = -\frac{23}{6} = -3\frac{5}{6} \approx -3.833333333
Share
Copied to clipboard
73=-12n+9\left(1\times 2+1\right)
Multiply both sides of the equation by 18, the least common multiple of 18,3,2.
73=-12n+9\left(2+1\right)
Multiply 1 and 2 to get 2.
73=-12n+9\times 3
Add 2 and 1 to get 3.
73=-12n+27
Multiply 9 and 3 to get 27.
-12n+27=73
Swap sides so that all variable terms are on the left hand side.
-12n=73-27
Subtract 27 from both sides.
-12n=46
Subtract 27 from 73 to get 46.
n=\frac{46}{-12}
Divide both sides by -12.
n=-\frac{23}{6}
Reduce the fraction \frac{46}{-12} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}