Evaluate
\frac{727}{122}\approx 5.959016393
Factor
\frac{727}{2 \cdot 61} = 5\frac{117}{122} = 5.959016393442623
Share
Copied to clipboard
\begin{array}{l}\phantom{122)}\phantom{1}\\122\overline{)727}\\\end{array}
Use the 1^{st} digit 7 from dividend 727
\begin{array}{l}\phantom{122)}0\phantom{2}\\122\overline{)727}\\\end{array}
Since 7 is less than 122, use the next digit 2 from dividend 727 and add 0 to the quotient
\begin{array}{l}\phantom{122)}0\phantom{3}\\122\overline{)727}\\\end{array}
Use the 2^{nd} digit 2 from dividend 727
\begin{array}{l}\phantom{122)}00\phantom{4}\\122\overline{)727}\\\end{array}
Since 72 is less than 122, use the next digit 7 from dividend 727 and add 0 to the quotient
\begin{array}{l}\phantom{122)}00\phantom{5}\\122\overline{)727}\\\end{array}
Use the 3^{rd} digit 7 from dividend 727
\begin{array}{l}\phantom{122)}005\phantom{6}\\122\overline{)727}\\\phantom{122)}\underline{\phantom{}610\phantom{}}\\\phantom{122)}117\\\end{array}
Find closest multiple of 122 to 727. We see that 5 \times 122 = 610 is the nearest. Now subtract 610 from 727 to get reminder 117. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }117
Since 117 is less than 122, stop the division. The reminder is 117. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}