Solve for x
x = \frac{\sqrt{1600321} + 1217}{12} \approx 206.836495341
x=\frac{1217-\sqrt{1600321}}{12}\approx -4.003162008
Graph
Share
Copied to clipboard
\left(x+4\right)\times 7200\left(1+206\right)-x\times 1200=7200x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x+4.
\left(x+4\right)\times 7200\times 207-x\times 1200=7200x\left(x+4\right)
Add 1 and 206 to get 207.
\left(x+4\right)\times 1490400-x\times 1200=7200x\left(x+4\right)
Multiply 7200 and 207 to get 1490400.
1490400x+5961600-x\times 1200=7200x\left(x+4\right)
Use the distributive property to multiply x+4 by 1490400.
1490400x+5961600-x\times 1200=7200x^{2}+28800x
Use the distributive property to multiply 7200x by x+4.
1490400x+5961600-x\times 1200-7200x^{2}=28800x
Subtract 7200x^{2} from both sides.
1490400x+5961600-x\times 1200-7200x^{2}-28800x=0
Subtract 28800x from both sides.
1461600x+5961600-x\times 1200-7200x^{2}=0
Combine 1490400x and -28800x to get 1461600x.
1461600x+5961600-1200x-7200x^{2}=0
Multiply -1 and 1200 to get -1200.
1460400x+5961600-7200x^{2}=0
Combine 1461600x and -1200x to get 1460400x.
-7200x^{2}+1460400x+5961600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1460400±\sqrt{1460400^{2}-4\left(-7200\right)\times 5961600}}{2\left(-7200\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7200 for a, 1460400 for b, and 5961600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1460400±\sqrt{2132768160000-4\left(-7200\right)\times 5961600}}{2\left(-7200\right)}
Square 1460400.
x=\frac{-1460400±\sqrt{2132768160000+28800\times 5961600}}{2\left(-7200\right)}
Multiply -4 times -7200.
x=\frac{-1460400±\sqrt{2132768160000+171694080000}}{2\left(-7200\right)}
Multiply 28800 times 5961600.
x=\frac{-1460400±\sqrt{2304462240000}}{2\left(-7200\right)}
Add 2132768160000 to 171694080000.
x=\frac{-1460400±1200\sqrt{1600321}}{2\left(-7200\right)}
Take the square root of 2304462240000.
x=\frac{-1460400±1200\sqrt{1600321}}{-14400}
Multiply 2 times -7200.
x=\frac{1200\sqrt{1600321}-1460400}{-14400}
Now solve the equation x=\frac{-1460400±1200\sqrt{1600321}}{-14400} when ± is plus. Add -1460400 to 1200\sqrt{1600321}.
x=\frac{1217-\sqrt{1600321}}{12}
Divide -1460400+1200\sqrt{1600321} by -14400.
x=\frac{-1200\sqrt{1600321}-1460400}{-14400}
Now solve the equation x=\frac{-1460400±1200\sqrt{1600321}}{-14400} when ± is minus. Subtract 1200\sqrt{1600321} from -1460400.
x=\frac{\sqrt{1600321}+1217}{12}
Divide -1460400-1200\sqrt{1600321} by -14400.
x=\frac{1217-\sqrt{1600321}}{12} x=\frac{\sqrt{1600321}+1217}{12}
The equation is now solved.
\left(x+4\right)\times 7200\left(1+206\right)-x\times 1200=7200x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x+4.
\left(x+4\right)\times 7200\times 207-x\times 1200=7200x\left(x+4\right)
Add 1 and 206 to get 207.
\left(x+4\right)\times 1490400-x\times 1200=7200x\left(x+4\right)
Multiply 7200 and 207 to get 1490400.
1490400x+5961600-x\times 1200=7200x\left(x+4\right)
Use the distributive property to multiply x+4 by 1490400.
1490400x+5961600-x\times 1200=7200x^{2}+28800x
Use the distributive property to multiply 7200x by x+4.
1490400x+5961600-x\times 1200-7200x^{2}=28800x
Subtract 7200x^{2} from both sides.
1490400x+5961600-x\times 1200-7200x^{2}-28800x=0
Subtract 28800x from both sides.
1461600x+5961600-x\times 1200-7200x^{2}=0
Combine 1490400x and -28800x to get 1461600x.
1461600x-x\times 1200-7200x^{2}=-5961600
Subtract 5961600 from both sides. Anything subtracted from zero gives its negation.
1461600x-1200x-7200x^{2}=-5961600
Multiply -1 and 1200 to get -1200.
1460400x-7200x^{2}=-5961600
Combine 1461600x and -1200x to get 1460400x.
-7200x^{2}+1460400x=-5961600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-7200x^{2}+1460400x}{-7200}=-\frac{5961600}{-7200}
Divide both sides by -7200.
x^{2}+\frac{1460400}{-7200}x=-\frac{5961600}{-7200}
Dividing by -7200 undoes the multiplication by -7200.
x^{2}-\frac{1217}{6}x=-\frac{5961600}{-7200}
Reduce the fraction \frac{1460400}{-7200} to lowest terms by extracting and canceling out 1200.
x^{2}-\frac{1217}{6}x=828
Divide -5961600 by -7200.
x^{2}-\frac{1217}{6}x+\left(-\frac{1217}{12}\right)^{2}=828+\left(-\frac{1217}{12}\right)^{2}
Divide -\frac{1217}{6}, the coefficient of the x term, by 2 to get -\frac{1217}{12}. Then add the square of -\frac{1217}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1217}{6}x+\frac{1481089}{144}=828+\frac{1481089}{144}
Square -\frac{1217}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1217}{6}x+\frac{1481089}{144}=\frac{1600321}{144}
Add 828 to \frac{1481089}{144}.
\left(x-\frac{1217}{12}\right)^{2}=\frac{1600321}{144}
Factor x^{2}-\frac{1217}{6}x+\frac{1481089}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1217}{12}\right)^{2}}=\sqrt{\frac{1600321}{144}}
Take the square root of both sides of the equation.
x-\frac{1217}{12}=\frac{\sqrt{1600321}}{12} x-\frac{1217}{12}=-\frac{\sqrt{1600321}}{12}
Simplify.
x=\frac{\sqrt{1600321}+1217}{12} x=\frac{1217-\sqrt{1600321}}{12}
Add \frac{1217}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}