Evaluate
\frac{705925}{21}\approx 33615.476190476
Factor
\frac{5 ^ {2} \cdot 11 \cdot 17 \cdot 151}{3 \cdot 7} = 33615\frac{10}{21} = 33615.47619047619
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)705925}\\\end{array}
Use the 1^{st} digit 7 from dividend 705925
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)705925}\\\end{array}
Since 7 is less than 21, use the next digit 0 from dividend 705925 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)705925}\\\end{array}
Use the 2^{nd} digit 0 from dividend 705925
\begin{array}{l}\phantom{21)}03\phantom{4}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}7\\\end{array}
Find closest multiple of 21 to 70. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 70 to get reminder 7. Add 3 to quotient.
\begin{array}{l}\phantom{21)}03\phantom{5}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\end{array}
Use the 3^{rd} digit 5 from dividend 705925
\begin{array}{l}\phantom{21)}033\phantom{6}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\phantom{21)}\underline{\phantom{9}63\phantom{999}}\\\phantom{21)9}12\\\end{array}
Find closest multiple of 21 to 75. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 75 to get reminder 12. Add 3 to quotient.
\begin{array}{l}\phantom{21)}033\phantom{7}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\phantom{21)}\underline{\phantom{9}63\phantom{999}}\\\phantom{21)9}129\\\end{array}
Use the 4^{th} digit 9 from dividend 705925
\begin{array}{l}\phantom{21)}0336\phantom{8}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\phantom{21)}\underline{\phantom{9}63\phantom{999}}\\\phantom{21)9}129\\\phantom{21)}\underline{\phantom{9}126\phantom{99}}\\\phantom{21)999}3\\\end{array}
Find closest multiple of 21 to 129. We see that 6 \times 21 = 126 is the nearest. Now subtract 126 from 129 to get reminder 3. Add 6 to quotient.
\begin{array}{l}\phantom{21)}0336\phantom{9}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\phantom{21)}\underline{\phantom{9}63\phantom{999}}\\\phantom{21)9}129\\\phantom{21)}\underline{\phantom{9}126\phantom{99}}\\\phantom{21)999}32\\\end{array}
Use the 5^{th} digit 2 from dividend 705925
\begin{array}{l}\phantom{21)}03361\phantom{10}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\phantom{21)}\underline{\phantom{9}63\phantom{999}}\\\phantom{21)9}129\\\phantom{21)}\underline{\phantom{9}126\phantom{99}}\\\phantom{21)999}32\\\phantom{21)}\underline{\phantom{999}21\phantom{9}}\\\phantom{21)999}11\\\end{array}
Find closest multiple of 21 to 32. We see that 1 \times 21 = 21 is the nearest. Now subtract 21 from 32 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{21)}03361\phantom{11}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\phantom{21)}\underline{\phantom{9}63\phantom{999}}\\\phantom{21)9}129\\\phantom{21)}\underline{\phantom{9}126\phantom{99}}\\\phantom{21)999}32\\\phantom{21)}\underline{\phantom{999}21\phantom{9}}\\\phantom{21)999}115\\\end{array}
Use the 6^{th} digit 5 from dividend 705925
\begin{array}{l}\phantom{21)}033615\phantom{12}\\21\overline{)705925}\\\phantom{21)}\underline{\phantom{}63\phantom{9999}}\\\phantom{21)9}75\\\phantom{21)}\underline{\phantom{9}63\phantom{999}}\\\phantom{21)9}129\\\phantom{21)}\underline{\phantom{9}126\phantom{99}}\\\phantom{21)999}32\\\phantom{21)}\underline{\phantom{999}21\phantom{9}}\\\phantom{21)999}115\\\phantom{21)}\underline{\phantom{999}105\phantom{}}\\\phantom{21)9999}10\\\end{array}
Find closest multiple of 21 to 115. We see that 5 \times 21 = 105 is the nearest. Now subtract 105 from 115 to get reminder 10. Add 5 to quotient.
\text{Quotient: }33615 \text{Reminder: }10
Since 10 is less than 21, stop the division. The reminder is 10. The topmost line 033615 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 33615.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}