Evaluate
\frac{70}{13}\approx 5.384615385
Factor
\frac{2 \cdot 5 \cdot 7}{13} = 5\frac{5}{13} = 5.384615384615385
Share
Copied to clipboard
\begin{array}{l}\phantom{1300)}\phantom{1}\\1300\overline{)7000}\\\end{array}
Use the 1^{st} digit 7 from dividend 7000
\begin{array}{l}\phantom{1300)}0\phantom{2}\\1300\overline{)7000}\\\end{array}
Since 7 is less than 1300, use the next digit 0 from dividend 7000 and add 0 to the quotient
\begin{array}{l}\phantom{1300)}0\phantom{3}\\1300\overline{)7000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 7000
\begin{array}{l}\phantom{1300)}00\phantom{4}\\1300\overline{)7000}\\\end{array}
Since 70 is less than 1300, use the next digit 0 from dividend 7000 and add 0 to the quotient
\begin{array}{l}\phantom{1300)}00\phantom{5}\\1300\overline{)7000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 7000
\begin{array}{l}\phantom{1300)}000\phantom{6}\\1300\overline{)7000}\\\end{array}
Since 700 is less than 1300, use the next digit 0 from dividend 7000 and add 0 to the quotient
\begin{array}{l}\phantom{1300)}000\phantom{7}\\1300\overline{)7000}\\\end{array}
Use the 4^{th} digit 0 from dividend 7000
\begin{array}{l}\phantom{1300)}0005\phantom{8}\\1300\overline{)7000}\\\phantom{1300)}\underline{\phantom{}6500\phantom{}}\\\phantom{1300)9}500\\\end{array}
Find closest multiple of 1300 to 7000. We see that 5 \times 1300 = 6500 is the nearest. Now subtract 6500 from 7000 to get reminder 500. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }500
Since 500 is less than 1300, stop the division. The reminder is 500. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}