Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{7x-1}{\left(x-3\right)\left(x+1\right)}-\frac{6x+1}{\left(x-2\right)\left(x+1\right)}
Factor x^{2}-2x-3. Factor x^{2}-x-2.
\frac{\left(7x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}-\frac{\left(6x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+1\right) and \left(x-2\right)\left(x+1\right) is \left(x-3\right)\left(x-2\right)\left(x+1\right). Multiply \frac{7x-1}{\left(x-3\right)\left(x+1\right)} times \frac{x-2}{x-2}. Multiply \frac{6x+1}{\left(x-2\right)\left(x+1\right)} times \frac{x-3}{x-3}.
\frac{\left(7x-1\right)\left(x-2\right)-\left(6x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
Since \frac{\left(7x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)} and \frac{\left(6x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7x^{2}-14x-x+2-6x^{2}+18x-x+3}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
Do the multiplications in \left(7x-1\right)\left(x-2\right)-\left(6x+1\right)\left(x-3\right).
\frac{x^{2}+2x+5}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
Combine like terms in 7x^{2}-14x-x+2-6x^{2}+18x-x+3.
\frac{x^{2}+2x+5}{x^{3}-4x^{2}+x+6}
Expand \left(x-3\right)\left(x-2\right)\left(x+1\right).
\frac{7x-1}{\left(x-3\right)\left(x+1\right)}-\frac{6x+1}{\left(x-2\right)\left(x+1\right)}
Factor x^{2}-2x-3. Factor x^{2}-x-2.
\frac{\left(7x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}-\frac{\left(6x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+1\right) and \left(x-2\right)\left(x+1\right) is \left(x-3\right)\left(x-2\right)\left(x+1\right). Multiply \frac{7x-1}{\left(x-3\right)\left(x+1\right)} times \frac{x-2}{x-2}. Multiply \frac{6x+1}{\left(x-2\right)\left(x+1\right)} times \frac{x-3}{x-3}.
\frac{\left(7x-1\right)\left(x-2\right)-\left(6x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
Since \frac{\left(7x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)} and \frac{\left(6x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7x^{2}-14x-x+2-6x^{2}+18x-x+3}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
Do the multiplications in \left(7x-1\right)\left(x-2\right)-\left(6x+1\right)\left(x-3\right).
\frac{x^{2}+2x+5}{\left(x-3\right)\left(x-2\right)\left(x+1\right)}
Combine like terms in 7x^{2}-14x-x+2-6x^{2}+18x-x+3.
\frac{x^{2}+2x+5}{x^{3}-4x^{2}+x+6}
Expand \left(x-3\right)\left(x-2\right)\left(x+1\right).