Solve for x
x=-20
x=10
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 7 x } { x + 4 } - 7 = \frac { x - 22 } { x - 4 }
Share
Copied to clipboard
\left(x-4\right)\times 7x+\left(x-4\right)\left(x+4\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
\left(7x-28\right)x+\left(x-4\right)\left(x+4\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply x-4 by 7.
7x^{2}-28x+\left(x-4\right)\left(x+4\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply 7x-28 by x.
7x^{2}-28x+\left(x^{2}-16\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply x-4 by x+4 and combine like terms.
7x^{2}-28x-7x^{2}+112=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply x^{2}-16 by -7.
-28x+112=\left(x+4\right)\left(x-22\right)
Combine 7x^{2} and -7x^{2} to get 0.
-28x+112=x^{2}-18x-88
Use the distributive property to multiply x+4 by x-22 and combine like terms.
-28x+112-x^{2}=-18x-88
Subtract x^{2} from both sides.
-28x+112-x^{2}+18x=-88
Add 18x to both sides.
-10x+112-x^{2}=-88
Combine -28x and 18x to get -10x.
-10x+112-x^{2}+88=0
Add 88 to both sides.
-10x+200-x^{2}=0
Add 112 and 88 to get 200.
-x^{2}-10x+200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\times 200}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -10 for b, and 200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\times 200}}{2\left(-1\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+4\times 200}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-10\right)±\sqrt{100+800}}{2\left(-1\right)}
Multiply 4 times 200.
x=\frac{-\left(-10\right)±\sqrt{900}}{2\left(-1\right)}
Add 100 to 800.
x=\frac{-\left(-10\right)±30}{2\left(-1\right)}
Take the square root of 900.
x=\frac{10±30}{2\left(-1\right)}
The opposite of -10 is 10.
x=\frac{10±30}{-2}
Multiply 2 times -1.
x=\frac{40}{-2}
Now solve the equation x=\frac{10±30}{-2} when ± is plus. Add 10 to 30.
x=-20
Divide 40 by -2.
x=-\frac{20}{-2}
Now solve the equation x=\frac{10±30}{-2} when ± is minus. Subtract 30 from 10.
x=10
Divide -20 by -2.
x=-20 x=10
The equation is now solved.
\left(x-4\right)\times 7x+\left(x-4\right)\left(x+4\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4.
\left(7x-28\right)x+\left(x-4\right)\left(x+4\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply x-4 by 7.
7x^{2}-28x+\left(x-4\right)\left(x+4\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply 7x-28 by x.
7x^{2}-28x+\left(x^{2}-16\right)\left(-7\right)=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply x-4 by x+4 and combine like terms.
7x^{2}-28x-7x^{2}+112=\left(x+4\right)\left(x-22\right)
Use the distributive property to multiply x^{2}-16 by -7.
-28x+112=\left(x+4\right)\left(x-22\right)
Combine 7x^{2} and -7x^{2} to get 0.
-28x+112=x^{2}-18x-88
Use the distributive property to multiply x+4 by x-22 and combine like terms.
-28x+112-x^{2}=-18x-88
Subtract x^{2} from both sides.
-28x+112-x^{2}+18x=-88
Add 18x to both sides.
-10x+112-x^{2}=-88
Combine -28x and 18x to get -10x.
-10x-x^{2}=-88-112
Subtract 112 from both sides.
-10x-x^{2}=-200
Subtract 112 from -88 to get -200.
-x^{2}-10x=-200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-10x}{-1}=-\frac{200}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{10}{-1}\right)x=-\frac{200}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+10x=-\frac{200}{-1}
Divide -10 by -1.
x^{2}+10x=200
Divide -200 by -1.
x^{2}+10x+5^{2}=200+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=200+25
Square 5.
x^{2}+10x+25=225
Add 200 to 25.
\left(x+5\right)^{2}=225
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{225}
Take the square root of both sides of the equation.
x+5=15 x+5=-15
Simplify.
x=10 x=-20
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}