Solve for b
\left\{\begin{matrix}b=-\frac{rx^{2}}{-7x^{6}+qx^{3}-x^{3}-2x-5}\text{, }&x\neq 0\text{ and }r\neq 0\text{ and }x\left(-7x^{5}+qx^{2}-x^{2}-2\right)\neq 5\text{ and }q\neq \frac{7x^{6}+x^{3}+2x+5}{x^{3}}\\b\neq 0\text{, }&x\neq 0\text{ and }q=\frac{7x^{6}+x^{3}+2x+5}{x^{3}}\text{ and }r=0\end{matrix}\right.
Solve for q
q=7x^{3}+1-\frac{r}{bx}+\frac{2}{x^{2}}+\frac{5}{x^{3}}
b\neq 0\text{ and }x\neq 0
Share
Copied to clipboard
b\left(7x^{6}+x^{3}+2x+5\right)=qxbx^{2}+xrx
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bx^{2}, the least common multiple of x^{2},bx.
7bx^{6}+bx^{3}+2bx+5b=qxbx^{2}+xrx
Use the distributive property to multiply b by 7x^{6}+x^{3}+2x+5.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+xrx
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+x^{2}r
Multiply x and x to get x^{2}.
7bx^{6}+bx^{3}+2bx+5b-qx^{3}b=x^{2}r
Subtract qx^{3}b from both sides.
7bx^{6}-bqx^{3}+bx^{3}+2bx+5b=rx^{2}
Reorder the terms.
\left(7x^{6}-qx^{3}+x^{3}+2x+5\right)b=rx^{2}
Combine all terms containing b.
\frac{\left(7x^{6}-qx^{3}+x^{3}+2x+5\right)b}{7x^{6}-qx^{3}+x^{3}+2x+5}=\frac{rx^{2}}{7x^{6}-qx^{3}+x^{3}+2x+5}
Divide both sides by -qx^{3}+7x^{6}+x^{3}+2x+5.
b=\frac{rx^{2}}{7x^{6}-qx^{3}+x^{3}+2x+5}
Dividing by -qx^{3}+7x^{6}+x^{3}+2x+5 undoes the multiplication by -qx^{3}+7x^{6}+x^{3}+2x+5.
b=\frac{rx^{2}}{7x^{6}-qx^{3}+x^{3}+2x+5}\text{, }b\neq 0
Variable b cannot be equal to 0.
b\left(7x^{6}+x^{3}+2x+5\right)=qxbx^{2}+xrx
Multiply both sides of the equation by bx^{2}, the least common multiple of x^{2},bx.
7bx^{6}+bx^{3}+2bx+5b=qxbx^{2}+xrx
Use the distributive property to multiply b by 7x^{6}+x^{3}+2x+5.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+xrx
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+x^{2}r
Multiply x and x to get x^{2}.
qx^{3}b+x^{2}r=7bx^{6}+bx^{3}+2bx+5b
Swap sides so that all variable terms are on the left hand side.
qx^{3}b=7bx^{6}+bx^{3}+2bx+5b-x^{2}r
Subtract x^{2}r from both sides.
bqx^{3}=7bx^{6}+bx^{3}-rx^{2}+2bx+5b
Reorder the terms.
bx^{3}q=7bx^{6}+bx^{3}-rx^{2}+2bx+5b
The equation is in standard form.
\frac{bx^{3}q}{bx^{3}}=\frac{7bx^{6}+bx^{3}-rx^{2}+2bx+5b}{bx^{3}}
Divide both sides by bx^{3}.
q=\frac{7bx^{6}+bx^{3}-rx^{2}+2bx+5b}{bx^{3}}
Dividing by bx^{3} undoes the multiplication by bx^{3}.
q=7x^{3}+1-\frac{r}{bx}+\frac{2}{x^{2}}+\frac{5}{x^{3}}
Divide 7bx^{6}+bx^{3}+2bx+5b-x^{2}r by bx^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}