Skip to main content
Solve for b
Tick mark Image
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

b\left(7x^{6}+x^{3}+2x+5\right)=qxbx^{2}+xrx
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bx^{2}, the least common multiple of x^{2},bx.
7bx^{6}+bx^{3}+2bx+5b=qxbx^{2}+xrx
Use the distributive property to multiply b by 7x^{6}+x^{3}+2x+5.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+xrx
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+x^{2}r
Multiply x and x to get x^{2}.
7bx^{6}+bx^{3}+2bx+5b-qx^{3}b=x^{2}r
Subtract qx^{3}b from both sides.
7bx^{6}-bqx^{3}+bx^{3}+2bx+5b=rx^{2}
Reorder the terms.
\left(7x^{6}-qx^{3}+x^{3}+2x+5\right)b=rx^{2}
Combine all terms containing b.
\frac{\left(7x^{6}-qx^{3}+x^{3}+2x+5\right)b}{7x^{6}-qx^{3}+x^{3}+2x+5}=\frac{rx^{2}}{7x^{6}-qx^{3}+x^{3}+2x+5}
Divide both sides by -qx^{3}+7x^{6}+x^{3}+2x+5.
b=\frac{rx^{2}}{7x^{6}-qx^{3}+x^{3}+2x+5}
Dividing by -qx^{3}+7x^{6}+x^{3}+2x+5 undoes the multiplication by -qx^{3}+7x^{6}+x^{3}+2x+5.
b=\frac{rx^{2}}{7x^{6}-qx^{3}+x^{3}+2x+5}\text{, }b\neq 0
Variable b cannot be equal to 0.
b\left(7x^{6}+x^{3}+2x+5\right)=qxbx^{2}+xrx
Multiply both sides of the equation by bx^{2}, the least common multiple of x^{2},bx.
7bx^{6}+bx^{3}+2bx+5b=qxbx^{2}+xrx
Use the distributive property to multiply b by 7x^{6}+x^{3}+2x+5.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+xrx
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
7bx^{6}+bx^{3}+2bx+5b=qx^{3}b+x^{2}r
Multiply x and x to get x^{2}.
qx^{3}b+x^{2}r=7bx^{6}+bx^{3}+2bx+5b
Swap sides so that all variable terms are on the left hand side.
qx^{3}b=7bx^{6}+bx^{3}+2bx+5b-x^{2}r
Subtract x^{2}r from both sides.
bqx^{3}=7bx^{6}+bx^{3}-rx^{2}+2bx+5b
Reorder the terms.
bx^{3}q=7bx^{6}+bx^{3}-rx^{2}+2bx+5b
The equation is in standard form.
\frac{bx^{3}q}{bx^{3}}=\frac{7bx^{6}+bx^{3}-rx^{2}+2bx+5b}{bx^{3}}
Divide both sides by bx^{3}.
q=\frac{7bx^{6}+bx^{3}-rx^{2}+2bx+5b}{bx^{3}}
Dividing by bx^{3} undoes the multiplication by bx^{3}.
q=7x^{3}+1-\frac{r}{bx}+\frac{2}{x^{2}}+\frac{5}{x^{3}}
Divide 7bx^{6}+bx^{3}+2bx+5b-x^{2}r by bx^{3}.