Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-3=141\times 4
Multiply both sides by 4.
7x^{2}-3=564
Multiply 141 and 4 to get 564.
7x^{2}-3-564=0
Subtract 564 from both sides.
7x^{2}-567=0
Subtract 564 from -3 to get -567.
x^{2}-81=0
Divide both sides by 7.
\left(x-9\right)\left(x+9\right)=0
Consider x^{2}-81. Rewrite x^{2}-81 as x^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=9 x=-9
To find equation solutions, solve x-9=0 and x+9=0.
7x^{2}-3=141\times 4
Multiply both sides by 4.
7x^{2}-3=564
Multiply 141 and 4 to get 564.
7x^{2}=564+3
Add 3 to both sides.
7x^{2}=567
Add 564 and 3 to get 567.
x^{2}=\frac{567}{7}
Divide both sides by 7.
x^{2}=81
Divide 567 by 7 to get 81.
x=9 x=-9
Take the square root of both sides of the equation.
7x^{2}-3=141\times 4
Multiply both sides by 4.
7x^{2}-3=564
Multiply 141 and 4 to get 564.
7x^{2}-3-564=0
Subtract 564 from both sides.
7x^{2}-567=0
Subtract 564 from -3 to get -567.
x=\frac{0±\sqrt{0^{2}-4\times 7\left(-567\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 0 for b, and -567 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 7\left(-567\right)}}{2\times 7}
Square 0.
x=\frac{0±\sqrt{-28\left(-567\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{0±\sqrt{15876}}{2\times 7}
Multiply -28 times -567.
x=\frac{0±126}{2\times 7}
Take the square root of 15876.
x=\frac{0±126}{14}
Multiply 2 times 7.
x=9
Now solve the equation x=\frac{0±126}{14} when ± is plus. Divide 126 by 14.
x=-9
Now solve the equation x=\frac{0±126}{14} when ± is minus. Divide -126 by 14.
x=9 x=-9
The equation is now solved.