Solve for x
x = -\frac{45}{31} = -1\frac{14}{31} \approx -1.451612903
Graph
Share
Copied to clipboard
5\left(7x+3\right)+20=2\left(2x-5\right)
Multiply both sides of the equation by 10, the least common multiple of 2,5.
35x+15+20=2\left(2x-5\right)
Use the distributive property to multiply 5 by 7x+3.
35x+35=2\left(2x-5\right)
Add 15 and 20 to get 35.
35x+35=4x-10
Use the distributive property to multiply 2 by 2x-5.
35x+35-4x=-10
Subtract 4x from both sides.
31x+35=-10
Combine 35x and -4x to get 31x.
31x=-10-35
Subtract 35 from both sides.
31x=-45
Subtract 35 from -10 to get -45.
x=\frac{-45}{31}
Divide both sides by 31.
x=-\frac{45}{31}
Fraction \frac{-45}{31} can be rewritten as -\frac{45}{31} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}