Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{7x+19}{\left(3x-2\right)\left(x+4\right)}-\frac{x+6}{\left(3x-2\right)\left(x+1\right)}
Factor 3x^{2}+10x-8. Factor 3x^{2}+x-2.
\frac{\left(7x+19\right)\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}-\frac{\left(x+6\right)\left(x+4\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3x-2\right)\left(x+4\right) and \left(3x-2\right)\left(x+1\right) is \left(3x-2\right)\left(x+1\right)\left(x+4\right). Multiply \frac{7x+19}{\left(3x-2\right)\left(x+4\right)} times \frac{x+1}{x+1}. Multiply \frac{x+6}{\left(3x-2\right)\left(x+1\right)} times \frac{x+4}{x+4}.
\frac{\left(7x+19\right)\left(x+1\right)-\left(x+6\right)\left(x+4\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
Since \frac{\left(7x+19\right)\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)} and \frac{\left(x+6\right)\left(x+4\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7x^{2}+7x+19x+19-x^{2}-4x-6x-24}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
Do the multiplications in \left(7x+19\right)\left(x+1\right)-\left(x+6\right)\left(x+4\right).
\frac{6x^{2}+16x-5}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
Combine like terms in 7x^{2}+7x+19x+19-x^{2}-4x-6x-24.
\frac{6x^{2}+16x-5}{3x^{3}+13x^{2}+2x-8}
Expand \left(3x-2\right)\left(x+1\right)\left(x+4\right).
\frac{7x+19}{\left(3x-2\right)\left(x+4\right)}-\frac{x+6}{\left(3x-2\right)\left(x+1\right)}
Factor 3x^{2}+10x-8. Factor 3x^{2}+x-2.
\frac{\left(7x+19\right)\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}-\frac{\left(x+6\right)\left(x+4\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3x-2\right)\left(x+4\right) and \left(3x-2\right)\left(x+1\right) is \left(3x-2\right)\left(x+1\right)\left(x+4\right). Multiply \frac{7x+19}{\left(3x-2\right)\left(x+4\right)} times \frac{x+1}{x+1}. Multiply \frac{x+6}{\left(3x-2\right)\left(x+1\right)} times \frac{x+4}{x+4}.
\frac{\left(7x+19\right)\left(x+1\right)-\left(x+6\right)\left(x+4\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
Since \frac{\left(7x+19\right)\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)} and \frac{\left(x+6\right)\left(x+4\right)}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7x^{2}+7x+19x+19-x^{2}-4x-6x-24}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
Do the multiplications in \left(7x+19\right)\left(x+1\right)-\left(x+6\right)\left(x+4\right).
\frac{6x^{2}+16x-5}{\left(3x-2\right)\left(x+1\right)\left(x+4\right)}
Combine like terms in 7x^{2}+7x+19x+19-x^{2}-4x-6x-24.
\frac{6x^{2}+16x-5}{3x^{3}+13x^{2}+2x-8}
Expand \left(3x-2\right)\left(x+1\right)\left(x+4\right).