Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. w
Tick mark Image

Similar Problems from Web Search

Share

\left(7w^{1}\right)^{1}\times \frac{1}{3w^{6}}
Use the rules of exponents to simplify the expression.
7^{1}\left(w^{1}\right)^{1}\times \frac{1}{3}\times \frac{1}{w^{6}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
7^{1}\times \frac{1}{3}\left(w^{1}\right)^{1}\times \frac{1}{w^{6}}
Use the Commutative Property of Multiplication.
7^{1}\times \frac{1}{3}w^{1}w^{6\left(-1\right)}
To raise a power to another power, multiply the exponents.
7^{1}\times \frac{1}{3}w^{1}w^{-6}
Multiply 6 times -1.
7^{1}\times \frac{1}{3}w^{1-6}
To multiply powers of the same base, add their exponents.
7^{1}\times \frac{1}{3}w^{-5}
Add the exponents 1 and -6.
7\times \frac{1}{3}w^{-5}
Raise 7 to the power 1.
\frac{7}{3}w^{-5}
Multiply 7 times \frac{1}{3}.
\frac{7^{1}w^{1}}{3^{1}w^{6}}
Use the rules of exponents to simplify the expression.
\frac{7^{1}w^{1-6}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{7^{1}w^{-5}}{3^{1}}
Subtract 6 from 1.
\frac{7}{3}w^{-5}
Divide 7 by 3.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{3}w^{1-6})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{3}w^{-5})
Do the arithmetic.
-5\times \frac{7}{3}w^{-5-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{35}{3}w^{-6}
Do the arithmetic.