Solve for q
q=-6
Share
Copied to clipboard
2\left(7q-9\right)=3\left(6q+2\right)
Multiply both sides of the equation by 12, the least common multiple of 6,4.
14q-18=3\left(6q+2\right)
Use the distributive property to multiply 2 by 7q-9.
14q-18=18q+6
Use the distributive property to multiply 3 by 6q+2.
14q-18-18q=6
Subtract 18q from both sides.
-4q-18=6
Combine 14q and -18q to get -4q.
-4q=6+18
Add 18 to both sides.
-4q=24
Add 6 and 18 to get 24.
q=\frac{24}{-4}
Divide both sides by -4.
q=-6
Divide 24 by -4 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}