Solve for x
x\geq \frac{13}{5}
Graph
Share
Copied to clipboard
5\left(7-x\right)-30\leq 2\left(3+5x\right)-40
Multiply both sides of the equation by 10, the least common multiple of 2,5. Since 10 is positive, the inequality direction remains the same.
35-5x-30\leq 2\left(3+5x\right)-40
Use the distributive property to multiply 5 by 7-x.
5-5x\leq 2\left(3+5x\right)-40
Subtract 30 from 35 to get 5.
5-5x\leq 6+10x-40
Use the distributive property to multiply 2 by 3+5x.
5-5x\leq -34+10x
Subtract 40 from 6 to get -34.
5-5x-10x\leq -34
Subtract 10x from both sides.
5-15x\leq -34
Combine -5x and -10x to get -15x.
-15x\leq -34-5
Subtract 5 from both sides.
-15x\leq -39
Subtract 5 from -34 to get -39.
x\geq \frac{-39}{-15}
Divide both sides by -15. Since -15 is negative, the inequality direction is changed.
x\geq \frac{13}{5}
Reduce the fraction \frac{-39}{-15} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}