Evaluate
\frac{\left(7x-1\right)\left(x+1\right)}{7x\left(x+2\right)}
Expand
\frac{7x^{2}+6x-1}{7x\left(x+2\right)}
Graph
Share
Copied to clipboard
\frac{\frac{7x}{x}-\frac{1}{x}}{7+\frac{7}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{x}{x}.
\frac{\frac{7x-1}{x}}{7+\frac{7}{x+1}}
Since \frac{7x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7x-1}{x}}{\frac{7\left(x+1\right)}{x+1}+\frac{7}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{x+1}{x+1}.
\frac{\frac{7x-1}{x}}{\frac{7\left(x+1\right)+7}{x+1}}
Since \frac{7\left(x+1\right)}{x+1} and \frac{7}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{7x-1}{x}}{\frac{7x+7+7}{x+1}}
Do the multiplications in 7\left(x+1\right)+7.
\frac{\frac{7x-1}{x}}{\frac{7x+14}{x+1}}
Combine like terms in 7x+7+7.
\frac{\left(7x-1\right)\left(x+1\right)}{x\left(7x+14\right)}
Divide \frac{7x-1}{x} by \frac{7x+14}{x+1} by multiplying \frac{7x-1}{x} by the reciprocal of \frac{7x+14}{x+1}.
\frac{7x^{2}+7x-x-1}{x\left(7x+14\right)}
Apply the distributive property by multiplying each term of 7x-1 by each term of x+1.
\frac{7x^{2}+6x-1}{x\left(7x+14\right)}
Combine 7x and -x to get 6x.
\frac{7x^{2}+6x-1}{7x^{2}+14x}
Use the distributive property to multiply x by 7x+14.
\frac{\frac{7x}{x}-\frac{1}{x}}{7+\frac{7}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{x}{x}.
\frac{\frac{7x-1}{x}}{7+\frac{7}{x+1}}
Since \frac{7x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7x-1}{x}}{\frac{7\left(x+1\right)}{x+1}+\frac{7}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{x+1}{x+1}.
\frac{\frac{7x-1}{x}}{\frac{7\left(x+1\right)+7}{x+1}}
Since \frac{7\left(x+1\right)}{x+1} and \frac{7}{x+1} have the same denominator, add them by adding their numerators.
\frac{\frac{7x-1}{x}}{\frac{7x+7+7}{x+1}}
Do the multiplications in 7\left(x+1\right)+7.
\frac{\frac{7x-1}{x}}{\frac{7x+14}{x+1}}
Combine like terms in 7x+7+7.
\frac{\left(7x-1\right)\left(x+1\right)}{x\left(7x+14\right)}
Divide \frac{7x-1}{x} by \frac{7x+14}{x+1} by multiplying \frac{7x-1}{x} by the reciprocal of \frac{7x+14}{x+1}.
\frac{7x^{2}+7x-x-1}{x\left(7x+14\right)}
Apply the distributive property by multiplying each term of 7x-1 by each term of x+1.
\frac{7x^{2}+6x-1}{x\left(7x+14\right)}
Combine 7x and -x to get 6x.
\frac{7x^{2}+6x-1}{7x^{2}+14x}
Use the distributive property to multiply x by 7x+14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}