Solve for x
x=4
x = \frac{13}{9} = 1\frac{4}{9} \approx 1.444444444
Graph
Share
Copied to clipboard
\left(x-2\right)\left(x-1\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Variable x cannot be equal to any of the values 1,2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right)\left(x-1\right), the least common multiple of x-3,x-2,x-1.
\left(x^{2}-3x+2\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x-2 by x-1 and combine like terms.
7x^{2}-21x+14-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x^{2}-3x+2 by 7.
7x^{2}-21x+14-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x-3 by x-1 and combine like terms.
7x^{2}-21x+14-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x^{2}-4x+3 by 10.
7x^{2}-21x+14-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
To find the opposite of 10x^{2}-40x+30, find the opposite of each term.
-3x^{2}-21x+14+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
Combine 7x^{2} and -10x^{2} to get -3x^{2}.
-3x^{2}+19x+14-30-\left(x-3\right)\left(x-2\right)\times 6=0
Combine -21x and 40x to get 19x.
-3x^{2}+19x-16-\left(x-3\right)\left(x-2\right)\times 6=0
Subtract 30 from 14 to get -16.
-3x^{2}+19x-16-\left(x^{2}-5x+6\right)\times 6=0
Use the distributive property to multiply x-3 by x-2 and combine like terms.
-3x^{2}+19x-16-\left(6x^{2}-30x+36\right)=0
Use the distributive property to multiply x^{2}-5x+6 by 6.
-3x^{2}+19x-16-6x^{2}+30x-36=0
To find the opposite of 6x^{2}-30x+36, find the opposite of each term.
-9x^{2}+19x-16+30x-36=0
Combine -3x^{2} and -6x^{2} to get -9x^{2}.
-9x^{2}+49x-16-36=0
Combine 19x and 30x to get 49x.
-9x^{2}+49x-52=0
Subtract 36 from -16 to get -52.
a+b=49 ab=-9\left(-52\right)=468
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx-52. To find a and b, set up a system to be solved.
1,468 2,234 3,156 4,117 6,78 9,52 12,39 13,36 18,26
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 468.
1+468=469 2+234=236 3+156=159 4+117=121 6+78=84 9+52=61 12+39=51 13+36=49 18+26=44
Calculate the sum for each pair.
a=36 b=13
The solution is the pair that gives sum 49.
\left(-9x^{2}+36x\right)+\left(13x-52\right)
Rewrite -9x^{2}+49x-52 as \left(-9x^{2}+36x\right)+\left(13x-52\right).
9x\left(-x+4\right)-13\left(-x+4\right)
Factor out 9x in the first and -13 in the second group.
\left(-x+4\right)\left(9x-13\right)
Factor out common term -x+4 by using distributive property.
x=4 x=\frac{13}{9}
To find equation solutions, solve -x+4=0 and 9x-13=0.
\left(x-2\right)\left(x-1\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Variable x cannot be equal to any of the values 1,2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right)\left(x-1\right), the least common multiple of x-3,x-2,x-1.
\left(x^{2}-3x+2\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x-2 by x-1 and combine like terms.
7x^{2}-21x+14-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x^{2}-3x+2 by 7.
7x^{2}-21x+14-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x-3 by x-1 and combine like terms.
7x^{2}-21x+14-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x^{2}-4x+3 by 10.
7x^{2}-21x+14-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
To find the opposite of 10x^{2}-40x+30, find the opposite of each term.
-3x^{2}-21x+14+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
Combine 7x^{2} and -10x^{2} to get -3x^{2}.
-3x^{2}+19x+14-30-\left(x-3\right)\left(x-2\right)\times 6=0
Combine -21x and 40x to get 19x.
-3x^{2}+19x-16-\left(x-3\right)\left(x-2\right)\times 6=0
Subtract 30 from 14 to get -16.
-3x^{2}+19x-16-\left(x^{2}-5x+6\right)\times 6=0
Use the distributive property to multiply x-3 by x-2 and combine like terms.
-3x^{2}+19x-16-\left(6x^{2}-30x+36\right)=0
Use the distributive property to multiply x^{2}-5x+6 by 6.
-3x^{2}+19x-16-6x^{2}+30x-36=0
To find the opposite of 6x^{2}-30x+36, find the opposite of each term.
-9x^{2}+19x-16+30x-36=0
Combine -3x^{2} and -6x^{2} to get -9x^{2}.
-9x^{2}+49x-16-36=0
Combine 19x and 30x to get 49x.
-9x^{2}+49x-52=0
Subtract 36 from -16 to get -52.
x=\frac{-49±\sqrt{49^{2}-4\left(-9\right)\left(-52\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 49 for b, and -52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-49±\sqrt{2401-4\left(-9\right)\left(-52\right)}}{2\left(-9\right)}
Square 49.
x=\frac{-49±\sqrt{2401+36\left(-52\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-49±\sqrt{2401-1872}}{2\left(-9\right)}
Multiply 36 times -52.
x=\frac{-49±\sqrt{529}}{2\left(-9\right)}
Add 2401 to -1872.
x=\frac{-49±23}{2\left(-9\right)}
Take the square root of 529.
x=\frac{-49±23}{-18}
Multiply 2 times -9.
x=-\frac{26}{-18}
Now solve the equation x=\frac{-49±23}{-18} when ± is plus. Add -49 to 23.
x=\frac{13}{9}
Reduce the fraction \frac{-26}{-18} to lowest terms by extracting and canceling out 2.
x=-\frac{72}{-18}
Now solve the equation x=\frac{-49±23}{-18} when ± is minus. Subtract 23 from -49.
x=4
Divide -72 by -18.
x=\frac{13}{9} x=4
The equation is now solved.
\left(x-2\right)\left(x-1\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Variable x cannot be equal to any of the values 1,2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right)\left(x-1\right), the least common multiple of x-3,x-2,x-1.
\left(x^{2}-3x+2\right)\times 7-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x-2 by x-1 and combine like terms.
7x^{2}-21x+14-\left(x-3\right)\left(x-1\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x^{2}-3x+2 by 7.
7x^{2}-21x+14-\left(x^{2}-4x+3\right)\times 10-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x-3 by x-1 and combine like terms.
7x^{2}-21x+14-\left(10x^{2}-40x+30\right)-\left(x-3\right)\left(x-2\right)\times 6=0
Use the distributive property to multiply x^{2}-4x+3 by 10.
7x^{2}-21x+14-10x^{2}+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
To find the opposite of 10x^{2}-40x+30, find the opposite of each term.
-3x^{2}-21x+14+40x-30-\left(x-3\right)\left(x-2\right)\times 6=0
Combine 7x^{2} and -10x^{2} to get -3x^{2}.
-3x^{2}+19x+14-30-\left(x-3\right)\left(x-2\right)\times 6=0
Combine -21x and 40x to get 19x.
-3x^{2}+19x-16-\left(x-3\right)\left(x-2\right)\times 6=0
Subtract 30 from 14 to get -16.
-3x^{2}+19x-16-\left(x^{2}-5x+6\right)\times 6=0
Use the distributive property to multiply x-3 by x-2 and combine like terms.
-3x^{2}+19x-16-\left(6x^{2}-30x+36\right)=0
Use the distributive property to multiply x^{2}-5x+6 by 6.
-3x^{2}+19x-16-6x^{2}+30x-36=0
To find the opposite of 6x^{2}-30x+36, find the opposite of each term.
-9x^{2}+19x-16+30x-36=0
Combine -3x^{2} and -6x^{2} to get -9x^{2}.
-9x^{2}+49x-16-36=0
Combine 19x and 30x to get 49x.
-9x^{2}+49x-52=0
Subtract 36 from -16 to get -52.
-9x^{2}+49x=52
Add 52 to both sides. Anything plus zero gives itself.
\frac{-9x^{2}+49x}{-9}=\frac{52}{-9}
Divide both sides by -9.
x^{2}+\frac{49}{-9}x=\frac{52}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{49}{9}x=\frac{52}{-9}
Divide 49 by -9.
x^{2}-\frac{49}{9}x=-\frac{52}{9}
Divide 52 by -9.
x^{2}-\frac{49}{9}x+\left(-\frac{49}{18}\right)^{2}=-\frac{52}{9}+\left(-\frac{49}{18}\right)^{2}
Divide -\frac{49}{9}, the coefficient of the x term, by 2 to get -\frac{49}{18}. Then add the square of -\frac{49}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{49}{9}x+\frac{2401}{324}=-\frac{52}{9}+\frac{2401}{324}
Square -\frac{49}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{49}{9}x+\frac{2401}{324}=\frac{529}{324}
Add -\frac{52}{9} to \frac{2401}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{49}{18}\right)^{2}=\frac{529}{324}
Factor x^{2}-\frac{49}{9}x+\frac{2401}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{49}{18}\right)^{2}}=\sqrt{\frac{529}{324}}
Take the square root of both sides of the equation.
x-\frac{49}{18}=\frac{23}{18} x-\frac{49}{18}=-\frac{23}{18}
Simplify.
x=4 x=\frac{13}{9}
Add \frac{49}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}