Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{7}{\left(x-6\right)\left(x+6\right)}-\frac{9}{\left(x-8\right)\left(x+6\right)}-\frac{7x}{x^{2}-14x+48}
Factor x^{2}-36. Factor x^{2}-2x-48.
\frac{7\left(x-8\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}-\frac{9\left(x-6\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}-\frac{7x}{x^{2}-14x+48}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-6\right)\left(x+6\right) and \left(x-8\right)\left(x+6\right) is \left(x-8\right)\left(x-6\right)\left(x+6\right). Multiply \frac{7}{\left(x-6\right)\left(x+6\right)} times \frac{x-8}{x-8}. Multiply \frac{9}{\left(x-8\right)\left(x+6\right)} times \frac{x-6}{x-6}.
\frac{7\left(x-8\right)-9\left(x-6\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}-\frac{7x}{x^{2}-14x+48}
Since \frac{7\left(x-8\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)} and \frac{9\left(x-6\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7x-56-9x+54}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}-\frac{7x}{x^{2}-14x+48}
Do the multiplications in 7\left(x-8\right)-9\left(x-6\right).
\frac{-2x-2}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}-\frac{7x}{x^{2}-14x+48}
Combine like terms in 7x-56-9x+54.
\frac{-2x-2}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}-\frac{7x}{\left(x-8\right)\left(x-6\right)}
Factor x^{2}-14x+48.
\frac{-2x-2}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}-\frac{7x\left(x+6\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-8\right)\left(x-6\right)\left(x+6\right) and \left(x-8\right)\left(x-6\right) is \left(x-8\right)\left(x-6\right)\left(x+6\right). Multiply \frac{7x}{\left(x-8\right)\left(x-6\right)} times \frac{x+6}{x+6}.
\frac{-2x-2-7x\left(x+6\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}
Since \frac{-2x-2}{\left(x-8\right)\left(x-6\right)\left(x+6\right)} and \frac{7x\left(x+6\right)}{\left(x-8\right)\left(x-6\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x-2-7x^{2}-42x}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}
Do the multiplications in -2x-2-7x\left(x+6\right).
\frac{-44x-2-7x^{2}}{\left(x-8\right)\left(x-6\right)\left(x+6\right)}
Combine like terms in -2x-2-7x^{2}-42x.
\frac{-44x-2-7x^{2}}{x^{3}-8x^{2}-36x+288}
Expand \left(x-8\right)\left(x-6\right)\left(x+6\right).