Solve for x
x=4
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
\left(3x-2\right)\times 7-\left(x+1\right)\times 4=\left(3x-2\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(x+1\right), the least common multiple of x+1,3x-2.
21x-14-\left(x+1\right)\times 4=\left(3x-2\right)\left(x+1\right)
Use the distributive property to multiply 3x-2 by 7.
21x-14-\left(4x+4\right)=\left(3x-2\right)\left(x+1\right)
Use the distributive property to multiply x+1 by 4.
21x-14-4x-4=\left(3x-2\right)\left(x+1\right)
To find the opposite of 4x+4, find the opposite of each term.
17x-14-4=\left(3x-2\right)\left(x+1\right)
Combine 21x and -4x to get 17x.
17x-18=\left(3x-2\right)\left(x+1\right)
Subtract 4 from -14 to get -18.
17x-18=3x^{2}+x-2
Use the distributive property to multiply 3x-2 by x+1 and combine like terms.
17x-18-3x^{2}=x-2
Subtract 3x^{2} from both sides.
17x-18-3x^{2}-x=-2
Subtract x from both sides.
16x-18-3x^{2}=-2
Combine 17x and -x to get 16x.
16x-18-3x^{2}+2=0
Add 2 to both sides.
16x-16-3x^{2}=0
Add -18 and 2 to get -16.
-3x^{2}+16x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-3\right)\left(-16\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 16 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-3\right)\left(-16\right)}}{2\left(-3\right)}
Square 16.
x=\frac{-16±\sqrt{256+12\left(-16\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-16±\sqrt{256-192}}{2\left(-3\right)}
Multiply 12 times -16.
x=\frac{-16±\sqrt{64}}{2\left(-3\right)}
Add 256 to -192.
x=\frac{-16±8}{2\left(-3\right)}
Take the square root of 64.
x=\frac{-16±8}{-6}
Multiply 2 times -3.
x=-\frac{8}{-6}
Now solve the equation x=\frac{-16±8}{-6} when ± is plus. Add -16 to 8.
x=\frac{4}{3}
Reduce the fraction \frac{-8}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{-6}
Now solve the equation x=\frac{-16±8}{-6} when ± is minus. Subtract 8 from -16.
x=4
Divide -24 by -6.
x=\frac{4}{3} x=4
The equation is now solved.
\left(3x-2\right)\times 7-\left(x+1\right)\times 4=\left(3x-2\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(x+1\right), the least common multiple of x+1,3x-2.
21x-14-\left(x+1\right)\times 4=\left(3x-2\right)\left(x+1\right)
Use the distributive property to multiply 3x-2 by 7.
21x-14-\left(4x+4\right)=\left(3x-2\right)\left(x+1\right)
Use the distributive property to multiply x+1 by 4.
21x-14-4x-4=\left(3x-2\right)\left(x+1\right)
To find the opposite of 4x+4, find the opposite of each term.
17x-14-4=\left(3x-2\right)\left(x+1\right)
Combine 21x and -4x to get 17x.
17x-18=\left(3x-2\right)\left(x+1\right)
Subtract 4 from -14 to get -18.
17x-18=3x^{2}+x-2
Use the distributive property to multiply 3x-2 by x+1 and combine like terms.
17x-18-3x^{2}=x-2
Subtract 3x^{2} from both sides.
17x-18-3x^{2}-x=-2
Subtract x from both sides.
16x-18-3x^{2}=-2
Combine 17x and -x to get 16x.
16x-3x^{2}=-2+18
Add 18 to both sides.
16x-3x^{2}=16
Add -2 and 18 to get 16.
-3x^{2}+16x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+16x}{-3}=\frac{16}{-3}
Divide both sides by -3.
x^{2}+\frac{16}{-3}x=\frac{16}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{16}{3}x=\frac{16}{-3}
Divide 16 by -3.
x^{2}-\frac{16}{3}x=-\frac{16}{3}
Divide 16 by -3.
x^{2}-\frac{16}{3}x+\left(-\frac{8}{3}\right)^{2}=-\frac{16}{3}+\left(-\frac{8}{3}\right)^{2}
Divide -\frac{16}{3}, the coefficient of the x term, by 2 to get -\frac{8}{3}. Then add the square of -\frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{3}x+\frac{64}{9}=-\frac{16}{3}+\frac{64}{9}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{16}{9}
Add -\frac{16}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}-\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x-\frac{8}{3}=\frac{4}{3} x-\frac{8}{3}=-\frac{4}{3}
Simplify.
x=4 x=\frac{4}{3}
Add \frac{8}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}