Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. w
Tick mark Image

Similar Problems from Web Search

Share

\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2}{w-3}
Factor w^{2}-9.
\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w-3\right)\left(w+3\right) and w-3 is \left(w-3\right)\left(w+3\right). Multiply \frac{2}{w-3} times \frac{w+3}{w+3}.
\frac{7+2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)}
Since \frac{7}{\left(w-3\right)\left(w+3\right)} and \frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)} have the same denominator, add them by adding their numerators.
\frac{7+2w+6}{\left(w-3\right)\left(w+3\right)}
Do the multiplications in 7+2\left(w+3\right).
\frac{13+2w}{\left(w-3\right)\left(w+3\right)}
Combine like terms in 7+2w+6.
\frac{13+2w}{w^{2}-9}
Expand \left(w-3\right)\left(w+3\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2}{w-3})
Factor w^{2}-9.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7}{\left(w-3\right)\left(w+3\right)}+\frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(w-3\right)\left(w+3\right) and w-3 is \left(w-3\right)\left(w+3\right). Multiply \frac{2}{w-3} times \frac{w+3}{w+3}.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7+2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)})
Since \frac{7}{\left(w-3\right)\left(w+3\right)} and \frac{2\left(w+3\right)}{\left(w-3\right)\left(w+3\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{7+2w+6}{\left(w-3\right)\left(w+3\right)})
Do the multiplications in 7+2\left(w+3\right).
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13+2w}{\left(w-3\right)\left(w+3\right)})
Combine like terms in 7+2w+6.
\frac{\mathrm{d}}{\mathrm{d}w}(\frac{13+2w}{w^{2}-9})
Consider \left(w-3\right)\left(w+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
\frac{\left(w^{2}-9\right)\frac{\mathrm{d}}{\mathrm{d}w}(2w^{1}+13)-\left(2w^{1}+13\right)\frac{\mathrm{d}}{\mathrm{d}w}(w^{2}-9)}{\left(w^{2}-9\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(w^{2}-9\right)\times 2w^{1-1}-\left(2w^{1}+13\right)\times 2w^{2-1}}{\left(w^{2}-9\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(w^{2}-9\right)\times 2w^{0}-\left(2w^{1}+13\right)\times 2w^{1}}{\left(w^{2}-9\right)^{2}}
Do the arithmetic.
\frac{w^{2}\times 2w^{0}-9\times 2w^{0}-\left(2w^{1}\times 2w^{1}+13\times 2w^{1}\right)}{\left(w^{2}-9\right)^{2}}
Expand using distributive property.
\frac{2w^{2}-9\times 2w^{0}-\left(2\times 2w^{1+1}+13\times 2w^{1}\right)}{\left(w^{2}-9\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{2w^{2}-18w^{0}-\left(4w^{2}+26w^{1}\right)}{\left(w^{2}-9\right)^{2}}
Do the arithmetic.
\frac{2w^{2}-18w^{0}-4w^{2}-26w^{1}}{\left(w^{2}-9\right)^{2}}
Remove unnecessary parentheses.
\frac{\left(2-4\right)w^{2}-18w^{0}-26w^{1}}{\left(w^{2}-9\right)^{2}}
Combine like terms.
\frac{-2w^{2}-18w^{0}-26w^{1}}{\left(w^{2}-9\right)^{2}}
Subtract 4 from 2.
\frac{-2w^{2}-18w^{0}-26w}{\left(w^{2}-9\right)^{2}}
For any term t, t^{1}=t.
\frac{-2w^{2}-18-26w}{\left(w^{2}-9\right)^{2}}
For any term t except 0, t^{0}=1.