\frac { 7 } { b c } = \frac { 9 } { 14,4 }
Solve for b
b=\frac{56}{5c}
c\neq 0
Solve for c
c=\frac{56}{5b}
b\neq 0
Share
Copied to clipboard
7=bc\times \frac{9}{14,4}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bc.
7=bc\times \frac{90}{144}
Expand \frac{9}{14,4} by multiplying both numerator and the denominator by 10.
7=bc\times \frac{5}{8}
Reduce the fraction \frac{90}{144} to lowest terms by extracting and canceling out 18.
bc\times \frac{5}{8}=7
Swap sides so that all variable terms are on the left hand side.
\frac{5c}{8}b=7
The equation is in standard form.
\frac{8\times \frac{5c}{8}b}{5c}=\frac{7\times 8}{5c}
Divide both sides by \frac{5}{8}c.
b=\frac{7\times 8}{5c}
Dividing by \frac{5}{8}c undoes the multiplication by \frac{5}{8}c.
b=\frac{56}{5c}
Divide 7 by \frac{5}{8}c.
b=\frac{56}{5c}\text{, }b\neq 0
Variable b cannot be equal to 0.
7=bc\times \frac{9}{14,4}
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by bc.
7=bc\times \frac{90}{144}
Expand \frac{9}{14,4} by multiplying both numerator and the denominator by 10.
7=bc\times \frac{5}{8}
Reduce the fraction \frac{90}{144} to lowest terms by extracting and canceling out 18.
bc\times \frac{5}{8}=7
Swap sides so that all variable terms are on the left hand side.
\frac{5b}{8}c=7
The equation is in standard form.
\frac{8\times \frac{5b}{8}c}{5b}=\frac{7\times 8}{5b}
Divide both sides by \frac{5}{8}b.
c=\frac{7\times 8}{5b}
Dividing by \frac{5}{8}b undoes the multiplication by \frac{5}{8}b.
c=\frac{56}{5b}
Divide 7 by \frac{5}{8}b.
c=\frac{56}{5b}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}