Evaluate
\frac{2a-43}{\left(a-4\right)\left(a+3\right)^{2}}
Differentiate w.r.t. a
-\frac{\left(8a-137\right)^{2}-14945}{16\left(a-4\right)^{2}\left(a+3\right)^{3}}
Share
Copied to clipboard
\frac{7}{\left(a+3\right)^{2}}-\frac{5}{\left(a-4\right)\left(a+3\right)}
Factor a^{2}+6a+9. Factor a^{2}-a-12.
\frac{7\left(a-4\right)}{\left(a-4\right)\left(a+3\right)^{2}}-\frac{5\left(a+3\right)}{\left(a-4\right)\left(a+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+3\right)^{2} and \left(a-4\right)\left(a+3\right) is \left(a-4\right)\left(a+3\right)^{2}. Multiply \frac{7}{\left(a+3\right)^{2}} times \frac{a-4}{a-4}. Multiply \frac{5}{\left(a-4\right)\left(a+3\right)} times \frac{a+3}{a+3}.
\frac{7\left(a-4\right)-5\left(a+3\right)}{\left(a-4\right)\left(a+3\right)^{2}}
Since \frac{7\left(a-4\right)}{\left(a-4\right)\left(a+3\right)^{2}} and \frac{5\left(a+3\right)}{\left(a-4\right)\left(a+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{7a-28-5a-15}{\left(a-4\right)\left(a+3\right)^{2}}
Do the multiplications in 7\left(a-4\right)-5\left(a+3\right).
\frac{2a-43}{\left(a-4\right)\left(a+3\right)^{2}}
Combine like terms in 7a-28-5a-15.
\frac{2a-43}{a^{3}+2a^{2}-15a-36}
Expand \left(a-4\right)\left(a+3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}