Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{7}{\left(a+3\right)^{2}}-\frac{5}{\left(a-4\right)\left(a+3\right)}
Factor a^{2}+6a+9. Factor a^{2}-a-12.
\frac{7\left(a-4\right)}{\left(a-4\right)\left(a+3\right)^{2}}-\frac{5\left(a+3\right)}{\left(a-4\right)\left(a+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+3\right)^{2} and \left(a-4\right)\left(a+3\right) is \left(a-4\right)\left(a+3\right)^{2}. Multiply \frac{7}{\left(a+3\right)^{2}} times \frac{a-4}{a-4}. Multiply \frac{5}{\left(a-4\right)\left(a+3\right)} times \frac{a+3}{a+3}.
\frac{7\left(a-4\right)-5\left(a+3\right)}{\left(a-4\right)\left(a+3\right)^{2}}
Since \frac{7\left(a-4\right)}{\left(a-4\right)\left(a+3\right)^{2}} and \frac{5\left(a+3\right)}{\left(a-4\right)\left(a+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{7a-28-5a-15}{\left(a-4\right)\left(a+3\right)^{2}}
Do the multiplications in 7\left(a-4\right)-5\left(a+3\right).
\frac{2a-43}{\left(a-4\right)\left(a+3\right)^{2}}
Combine like terms in 7a-28-5a-15.
\frac{2a-43}{a^{3}+2a^{2}-15a-36}
Expand \left(a-4\right)\left(a+3\right)^{2}.