Solve for x
x = \frac{3 \sqrt{42}}{7} \approx 2.777460299
x = -\frac{3 \sqrt{42}}{7} \approx -2.777460299
Graph
Share
Copied to clipboard
\frac{7}{9}x^{2}=6
Add 6 to both sides. Anything plus zero gives itself.
x^{2}=6\times \frac{9}{7}
Multiply both sides by \frac{9}{7}, the reciprocal of \frac{7}{9}.
x^{2}=\frac{54}{7}
Multiply 6 and \frac{9}{7} to get \frac{54}{7}.
x=\frac{3\sqrt{42}}{7} x=-\frac{3\sqrt{42}}{7}
Take the square root of both sides of the equation.
\frac{7}{9}x^{2}-6=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{7}{9}\left(-6\right)}}{2\times \frac{7}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{7}{9} for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{7}{9}\left(-6\right)}}{2\times \frac{7}{9}}
Square 0.
x=\frac{0±\sqrt{-\frac{28}{9}\left(-6\right)}}{2\times \frac{7}{9}}
Multiply -4 times \frac{7}{9}.
x=\frac{0±\sqrt{\frac{56}{3}}}{2\times \frac{7}{9}}
Multiply -\frac{28}{9} times -6.
x=\frac{0±\frac{2\sqrt{42}}{3}}{2\times \frac{7}{9}}
Take the square root of \frac{56}{3}.
x=\frac{0±\frac{2\sqrt{42}}{3}}{\frac{14}{9}}
Multiply 2 times \frac{7}{9}.
x=\frac{3\sqrt{42}}{7}
Now solve the equation x=\frac{0±\frac{2\sqrt{42}}{3}}{\frac{14}{9}} when ± is plus.
x=-\frac{3\sqrt{42}}{7}
Now solve the equation x=\frac{0±\frac{2\sqrt{42}}{3}}{\frac{14}{9}} when ± is minus.
x=\frac{3\sqrt{42}}{7} x=-\frac{3\sqrt{42}}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}