Solve for x
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
7-9x+3=3\left(-2x+4\right)+x-9
Multiply both sides of the equation by 9, the least common multiple of 9,3.
10-9x=3\left(-2x+4\right)+x-9
Add 7 and 3 to get 10.
10-9x=-6x+12+x-9
Use the distributive property to multiply 3 by -2x+4.
10-9x=-5x+12-9
Combine -6x and x to get -5x.
10-9x=-5x+3
Subtract 9 from 12 to get 3.
10-9x+5x=3
Add 5x to both sides.
10-4x=3
Combine -9x and 5x to get -4x.
-4x=3-10
Subtract 10 from both sides.
-4x=-7
Subtract 10 from 3 to get -7.
x=\frac{-7}{-4}
Divide both sides by -4.
x=\frac{7}{4}
Fraction \frac{-7}{-4} can be simplified to \frac{7}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}