Solve for k
k=1-\frac{32}{7x}-\frac{8}{7x^{2}}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{2\left(\sqrt{2\left(39-7k\right)}-8\right)}{7\left(k-1\right)}\text{; }x=-\frac{2\left(\sqrt{2\left(39-7k\right)}+8\right)}{7\left(k-1\right)}\text{, }&k\neq 1\\x=-\frac{1}{4}\text{, }&k=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{2\left(\sqrt{2\left(39-7k\right)}-8\right)}{7\left(k-1\right)}\text{; }x=-\frac{2\left(\sqrt{2\left(39-7k\right)}+8\right)}{7\left(k-1\right)}\text{, }&k\neq 1\text{ and }k\leq \frac{39}{7}\\x=-\frac{1}{4}\text{, }&k=1\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(\frac{7}{8}k-\frac{7}{8}\right)x^{2}+4x+1=0
Use the distributive property to multiply \frac{7}{8} by k-1.
\frac{7}{8}kx^{2}-\frac{7}{8}x^{2}+4x+1=0
Use the distributive property to multiply \frac{7}{8}k-\frac{7}{8} by x^{2}.
\frac{7}{8}kx^{2}+4x+1=\frac{7}{8}x^{2}
Add \frac{7}{8}x^{2} to both sides. Anything plus zero gives itself.
\frac{7}{8}kx^{2}+1=\frac{7}{8}x^{2}-4x
Subtract 4x from both sides.
\frac{7}{8}kx^{2}=\frac{7}{8}x^{2}-4x-1
Subtract 1 from both sides.
\frac{7x^{2}}{8}k=\frac{7x^{2}}{8}-4x-1
The equation is in standard form.
\frac{8\times \frac{7x^{2}}{8}k}{7x^{2}}=\frac{8\left(\frac{7x^{2}}{8}-4x-1\right)}{7x^{2}}
Divide both sides by \frac{7}{8}x^{2}.
k=\frac{8\left(\frac{7x^{2}}{8}-4x-1\right)}{7x^{2}}
Dividing by \frac{7}{8}x^{2} undoes the multiplication by \frac{7}{8}x^{2}.
k=1-\frac{32x+8}{7x^{2}}
Divide \frac{7x^{2}}{8}-4x-1 by \frac{7}{8}x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}