Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(-6+\sqrt{3}\right)}{\left(-6-\sqrt{3}\right)\left(-6+\sqrt{3}\right)}
Rationalize the denominator of \frac{7}{-6-\sqrt{3}} by multiplying numerator and denominator by -6+\sqrt{3}.
\frac{7\left(-6+\sqrt{3}\right)}{\left(-6\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(-6-\sqrt{3}\right)\left(-6+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-6+\sqrt{3}\right)}{36-3}
Square -6. Square \sqrt{3}.
\frac{7\left(-6+\sqrt{3}\right)}{33}
Subtract 3 from 36 to get 33.
\frac{-42+7\sqrt{3}}{33}
Use the distributive property to multiply 7 by -6+\sqrt{3}.