Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\left(\sqrt{2}-3\right)}{\left(\sqrt{2}+3\right)\left(\sqrt{2}-3\right)}
Rationalize the denominator of \frac{7}{\sqrt{2}+3} by multiplying numerator and denominator by \sqrt{2}-3.
\frac{7\left(\sqrt{2}-3\right)}{\left(\sqrt{2}\right)^{2}-3^{2}}
Consider \left(\sqrt{2}+3\right)\left(\sqrt{2}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(\sqrt{2}-3\right)}{2-9}
Square \sqrt{2}. Square 3.
\frac{7\left(\sqrt{2}-3\right)}{-7}
Subtract 9 from 2 to get -7.
-\left(\sqrt{2}-3\right)
Cancel out -7 and -7.
-\sqrt{2}-\left(-3\right)
To find the opposite of \sqrt{2}-3, find the opposite of each term.
-\sqrt{2}+3
The opposite of -3 is 3.