Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{\left(\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}-2\sqrt{3}\right)}
Rationalize the denominator of \frac{7\sqrt{3}}{\sqrt{5}+2\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-2\sqrt{3}.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-\left(2\sqrt{3}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-4\times 3}
The square of \sqrt{3} is 3.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-12}
Multiply 4 and 3 to get 12.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{-7}
Subtract 12 from 5 to get -7.
-\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)
Cancel out -7 and -7.
-\sqrt{3}\sqrt{5}+2\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply -\sqrt{3} by \sqrt{5}-2\sqrt{3}.
-\sqrt{15}+2\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-\sqrt{15}+2\times 3
The square of \sqrt{3} is 3.
-\sqrt{15}+6
Multiply 2 and 3 to get 6.