Evaluate
6-\sqrt{15}\approx 2.127016654
Share
Copied to clipboard
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{\left(\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}-2\sqrt{3}\right)}
Rationalize the denominator of \frac{7\sqrt{3}}{\sqrt{5}+2\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-2\sqrt{3}.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+2\sqrt{3}\right)\left(\sqrt{5}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-\left(2\sqrt{3}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-4\times 3}
The square of \sqrt{3} is 3.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{5-12}
Multiply 4 and 3 to get 12.
\frac{7\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)}{-7}
Subtract 12 from 5 to get -7.
-\sqrt{3}\left(\sqrt{5}-2\sqrt{3}\right)
Cancel out -7 and -7.
-\sqrt{3}\sqrt{5}+2\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply -\sqrt{3} by \sqrt{5}-2\sqrt{3}.
-\sqrt{15}+2\left(\sqrt{3}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
-\sqrt{15}+2\times 3
The square of \sqrt{3} is 3.
-\sqrt{15}+6
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}