\frac { 7 \frac { 2 } { 3 } + \frac { 39 } { 2 } \cdot 0,2 } { \frac { 3 } { 5 } : 0,1 + 4,2 } = \frac { 2 x } { \frac { 7 } { 2 } + 30,5 }
Solve for x
x=\frac{347}{18}\approx 19,277777778
Graph
Share
Copied to clipboard
\frac{\frac{21+2}{3}+\frac{39}{2}\times 0,2}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Multiply 7 and 3 to get 21.
\frac{\frac{23}{3}+\frac{39}{2}\times 0,2}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Add 21 and 2 to get 23.
\frac{\frac{23}{3}+\frac{39}{2}\times \frac{1}{5}}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Convert decimal number 0,2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{23}{3}+\frac{39\times 1}{2\times 5}}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Multiply \frac{39}{2} times \frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{23}{3}+\frac{39}{10}}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Do the multiplications in the fraction \frac{39\times 1}{2\times 5}.
\frac{\frac{230}{30}+\frac{117}{30}}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Least common multiple of 3 and 10 is 30. Convert \frac{23}{3} and \frac{39}{10} to fractions with denominator 30.
\frac{\frac{230+117}{30}}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Since \frac{230}{30} and \frac{117}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{347}{30}}{\frac{\frac{3}{5}}{0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Add 230 and 117 to get 347.
\frac{\frac{347}{30}}{\frac{3}{5\times 0,1}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Express \frac{\frac{3}{5}}{0,1} as a single fraction.
\frac{\frac{347}{30}}{\frac{3}{0,5}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Multiply 5 and 0,1 to get 0,5.
\frac{\frac{347}{30}}{\frac{30}{5}+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Expand \frac{3}{0,5} by multiplying both numerator and the denominator by 10.
\frac{\frac{347}{30}}{6+4,2}=\frac{2x}{\frac{7}{2}+30,5}
Divide 30 by 5 to get 6.
\frac{\frac{347}{30}}{10,2}=\frac{2x}{\frac{7}{2}+30,5}
Add 6 and 4,2 to get 10,2.
\frac{347}{30\times 10,2}=\frac{2x}{\frac{7}{2}+30,5}
Express \frac{\frac{347}{30}}{10,2} as a single fraction.
\frac{347}{306}=\frac{2x}{\frac{7}{2}+30,5}
Multiply 30 and 10,2 to get 306.
\frac{347}{306}=\frac{2x}{\frac{7}{2}+\frac{61}{2}}
Convert decimal number 30,5 to fraction \frac{305}{10}. Reduce the fraction \frac{305}{10} to lowest terms by extracting and canceling out 5.
\frac{347}{306}=\frac{2x}{\frac{7+61}{2}}
Since \frac{7}{2} and \frac{61}{2} have the same denominator, add them by adding their numerators.
\frac{347}{306}=\frac{2x}{\frac{68}{2}}
Add 7 and 61 to get 68.
\frac{347}{306}=\frac{2x}{34}
Divide 68 by 2 to get 34.
\frac{347}{306}=\frac{1}{17}x
Divide 2x by 34 to get \frac{1}{17}x.
\frac{1}{17}x=\frac{347}{306}
Swap sides so that all variable terms are on the left hand side.
x=\frac{347}{306}\times 17
Multiply both sides by 17, the reciprocal of \frac{1}{17}.
x=\frac{347\times 17}{306}
Express \frac{347}{306}\times 17 as a single fraction.
x=\frac{5899}{306}
Multiply 347 and 17 to get 5899.
x=\frac{347}{18}
Reduce the fraction \frac{5899}{306} to lowest terms by extracting and canceling out 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}