Evaluate
\frac{281}{400}=0.7025
Factor
\frac{281}{2 ^ {4} \cdot 5 ^ {2}} = 0.7025
Share
Copied to clipboard
\frac{\frac{14+1}{2}\times \frac{2\times 3+2}{3}-\frac{\frac{12\times 4+1}{4}}{\frac{7}{2}}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply 7 and 2 to get 14.
\frac{\frac{15}{2}\times \frac{2\times 3+2}{3}-\frac{\frac{12\times 4+1}{4}}{\frac{7}{2}}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Add 14 and 1 to get 15.
\frac{\frac{15}{2}\times \frac{6+2}{3}-\frac{\frac{12\times 4+1}{4}}{\frac{7}{2}}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply 2 and 3 to get 6.
\frac{\frac{15}{2}\times \frac{8}{3}-\frac{\frac{12\times 4+1}{4}}{\frac{7}{2}}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Add 6 and 2 to get 8.
\frac{\frac{15\times 8}{2\times 3}-\frac{\frac{12\times 4+1}{4}}{\frac{7}{2}}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply \frac{15}{2} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{120}{6}-\frac{\frac{12\times 4+1}{4}}{\frac{7}{2}}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Do the multiplications in the fraction \frac{15\times 8}{2\times 3}.
\frac{20-\frac{\frac{12\times 4+1}{4}}{\frac{7}{2}}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Divide 120 by 6 to get 20.
\frac{20-\frac{\left(12\times 4+1\right)\times 2}{4\times 7}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Divide \frac{12\times 4+1}{4} by \frac{7}{2} by multiplying \frac{12\times 4+1}{4} by the reciprocal of \frac{7}{2}.
\frac{20-\frac{1+4\times 12}{2\times 7}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Cancel out 2 in both numerator and denominator.
\frac{20-\frac{1+48}{2\times 7}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply 4 and 12 to get 48.
\frac{20-\frac{49}{2\times 7}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Add 1 and 48 to get 49.
\frac{20-\frac{49}{14}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply 2 and 7 to get 14.
\frac{20-\frac{7}{2}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Reduce the fraction \frac{49}{14} to lowest terms by extracting and canceling out 7.
\frac{\frac{40}{2}-\frac{7}{2}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Convert 20 to fraction \frac{40}{2}.
\frac{\frac{40-7}{2}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Since \frac{40}{2} and \frac{7}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{33}{2}}{\frac{110}{\frac{3}{5}}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Subtract 7 from 40 to get 33.
\frac{\frac{33}{2}}{110\times \frac{5}{3}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Divide 110 by \frac{3}{5} by multiplying 110 by the reciprocal of \frac{3}{5}.
\frac{\frac{33}{2}}{\frac{110\times 5}{3}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Express 110\times \frac{5}{3} as a single fraction.
\frac{\frac{33}{2}}{\frac{550}{3}}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply 110 and 5 to get 550.
\frac{33}{2}\times \frac{3}{550}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Divide \frac{33}{2} by \frac{550}{3} by multiplying \frac{33}{2} by the reciprocal of \frac{550}{3}.
\frac{33\times 3}{2\times 550}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply \frac{33}{2} times \frac{3}{550} by multiplying numerator times numerator and denominator times denominator.
\frac{99}{1100}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Do the multiplications in the fraction \frac{33\times 3}{2\times 550}.
\frac{9}{100}+\frac{\frac{3\times 8+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Reduce the fraction \frac{99}{1100} to lowest terms by extracting and canceling out 11.
\frac{9}{100}+\frac{\frac{24+3}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply 3 and 8 to get 24.
\frac{9}{100}+\frac{\frac{27}{8}+\frac{2\times 4+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Add 24 and 3 to get 27.
\frac{9}{100}+\frac{\frac{27}{8}+\frac{8+3}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Multiply 2 and 4 to get 8.
\frac{9}{100}+\frac{\frac{27}{8}+\frac{11}{4}}{\frac{24}{\frac{2\times 5+2}{5}}}
Add 8 and 3 to get 11.
\frac{9}{100}+\frac{\frac{27}{8}+\frac{22}{8}}{\frac{24}{\frac{2\times 5+2}{5}}}
Least common multiple of 8 and 4 is 8. Convert \frac{27}{8} and \frac{11}{4} to fractions with denominator 8.
\frac{9}{100}+\frac{\frac{27+22}{8}}{\frac{24}{\frac{2\times 5+2}{5}}}
Since \frac{27}{8} and \frac{22}{8} have the same denominator, add them by adding their numerators.
\frac{9}{100}+\frac{\frac{49}{8}}{\frac{24}{\frac{2\times 5+2}{5}}}
Add 27 and 22 to get 49.
\frac{9}{100}+\frac{\frac{49}{8}}{\frac{24\times 5}{2\times 5+2}}
Divide 24 by \frac{2\times 5+2}{5} by multiplying 24 by the reciprocal of \frac{2\times 5+2}{5}.
\frac{9}{100}+\frac{\frac{49}{8}}{\frac{120}{2\times 5+2}}
Multiply 24 and 5 to get 120.
\frac{9}{100}+\frac{\frac{49}{8}}{\frac{120}{10+2}}
Multiply 2 and 5 to get 10.
\frac{9}{100}+\frac{\frac{49}{8}}{\frac{120}{12}}
Add 10 and 2 to get 12.
\frac{9}{100}+\frac{\frac{49}{8}}{10}
Divide 120 by 12 to get 10.
\frac{9}{100}+\frac{49}{8\times 10}
Express \frac{\frac{49}{8}}{10} as a single fraction.
\frac{9}{100}+\frac{49}{80}
Multiply 8 and 10 to get 80.
\frac{36}{400}+\frac{245}{400}
Least common multiple of 100 and 80 is 400. Convert \frac{9}{100} and \frac{49}{80} to fractions with denominator 400.
\frac{36+245}{400}
Since \frac{36}{400} and \frac{245}{400} have the same denominator, add them by adding their numerators.
\frac{281}{400}
Add 36 and 245 to get 281.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}