Solve for x
x=\sqrt{97}\approx 9.848857802
x=-\sqrt{97}\approx -9.848857802
Graph
Share
Copied to clipboard
\frac{49+8^{2}-x^{2}}{2\times 7\times 8}=\frac{1}{7}
Calculate 7 to the power of 2 and get 49.
\frac{49+64-x^{2}}{2\times 7\times 8}=\frac{1}{7}
Calculate 8 to the power of 2 and get 64.
\frac{113-x^{2}}{2\times 7\times 8}=\frac{1}{7}
Add 49 and 64 to get 113.
\frac{113-x^{2}}{14\times 8}=\frac{1}{7}
Multiply 2 and 7 to get 14.
\frac{113-x^{2}}{112}=\frac{1}{7}
Multiply 14 and 8 to get 112.
\frac{113}{112}-\frac{1}{112}x^{2}=\frac{1}{7}
Divide each term of 113-x^{2} by 112 to get \frac{113}{112}-\frac{1}{112}x^{2}.
-\frac{1}{112}x^{2}=\frac{1}{7}-\frac{113}{112}
Subtract \frac{113}{112} from both sides.
-\frac{1}{112}x^{2}=-\frac{97}{112}
Subtract \frac{113}{112} from \frac{1}{7} to get -\frac{97}{112}.
x^{2}=-\frac{97}{112}\left(-112\right)
Multiply both sides by -112, the reciprocal of -\frac{1}{112}.
x^{2}=97
Multiply -\frac{97}{112} and -112 to get 97.
x=\sqrt{97} x=-\sqrt{97}
Take the square root of both sides of the equation.
\frac{49+8^{2}-x^{2}}{2\times 7\times 8}=\frac{1}{7}
Calculate 7 to the power of 2 and get 49.
\frac{49+64-x^{2}}{2\times 7\times 8}=\frac{1}{7}
Calculate 8 to the power of 2 and get 64.
\frac{113-x^{2}}{2\times 7\times 8}=\frac{1}{7}
Add 49 and 64 to get 113.
\frac{113-x^{2}}{14\times 8}=\frac{1}{7}
Multiply 2 and 7 to get 14.
\frac{113-x^{2}}{112}=\frac{1}{7}
Multiply 14 and 8 to get 112.
\frac{113}{112}-\frac{1}{112}x^{2}=\frac{1}{7}
Divide each term of 113-x^{2} by 112 to get \frac{113}{112}-\frac{1}{112}x^{2}.
\frac{113}{112}-\frac{1}{112}x^{2}-\frac{1}{7}=0
Subtract \frac{1}{7} from both sides.
\frac{97}{112}-\frac{1}{112}x^{2}=0
Subtract \frac{1}{7} from \frac{113}{112} to get \frac{97}{112}.
-\frac{1}{112}x^{2}+\frac{97}{112}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{112}\right)\times \frac{97}{112}}}{2\left(-\frac{1}{112}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{112} for a, 0 for b, and \frac{97}{112} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{112}\right)\times \frac{97}{112}}}{2\left(-\frac{1}{112}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{1}{28}\times \frac{97}{112}}}{2\left(-\frac{1}{112}\right)}
Multiply -4 times -\frac{1}{112}.
x=\frac{0±\sqrt{\frac{97}{3136}}}{2\left(-\frac{1}{112}\right)}
Multiply \frac{1}{28} times \frac{97}{112} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{\sqrt{97}}{56}}{2\left(-\frac{1}{112}\right)}
Take the square root of \frac{97}{3136}.
x=\frac{0±\frac{\sqrt{97}}{56}}{-\frac{1}{56}}
Multiply 2 times -\frac{1}{112}.
x=-\sqrt{97}
Now solve the equation x=\frac{0±\frac{\sqrt{97}}{56}}{-\frac{1}{56}} when ± is plus.
x=\sqrt{97}
Now solve the equation x=\frac{0±\frac{\sqrt{97}}{56}}{-\frac{1}{56}} when ± is minus.
x=-\sqrt{97} x=\sqrt{97}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}