Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7+i\right)\left(-7-6i\right)}{\left(-7+6i\right)\left(-7-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -7-6i.
\frac{\left(7+i\right)\left(-7-6i\right)}{\left(-7\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7+i\right)\left(-7-6i\right)}{85}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\left(-7\right)+7\times \left(-6i\right)-7i-6i^{2}}{85}
Multiply complex numbers 7+i and -7-6i like you multiply binomials.
\frac{7\left(-7\right)+7\times \left(-6i\right)-7i-6\left(-1\right)}{85}
By definition, i^{2} is -1.
\frac{-49-42i-7i+6}{85}
Do the multiplications in 7\left(-7\right)+7\times \left(-6i\right)-7i-6\left(-1\right).
\frac{-49+6+\left(-42-7\right)i}{85}
Combine the real and imaginary parts in -49-42i-7i+6.
\frac{-43-49i}{85}
Do the additions in -49+6+\left(-42-7\right)i.
-\frac{43}{85}-\frac{49}{85}i
Divide -43-49i by 85 to get -\frac{43}{85}-\frac{49}{85}i.
Re(\frac{\left(7+i\right)\left(-7-6i\right)}{\left(-7+6i\right)\left(-7-6i\right)})
Multiply both numerator and denominator of \frac{7+i}{-7+6i} by the complex conjugate of the denominator, -7-6i.
Re(\frac{\left(7+i\right)\left(-7-6i\right)}{\left(-7\right)^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(7+i\right)\left(-7-6i\right)}{85})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\left(-7\right)+7\times \left(-6i\right)-7i-6i^{2}}{85})
Multiply complex numbers 7+i and -7-6i like you multiply binomials.
Re(\frac{7\left(-7\right)+7\times \left(-6i\right)-7i-6\left(-1\right)}{85})
By definition, i^{2} is -1.
Re(\frac{-49-42i-7i+6}{85})
Do the multiplications in 7\left(-7\right)+7\times \left(-6i\right)-7i-6\left(-1\right).
Re(\frac{-49+6+\left(-42-7\right)i}{85})
Combine the real and imaginary parts in -49-42i-7i+6.
Re(\frac{-43-49i}{85})
Do the additions in -49+6+\left(-42-7\right)i.
Re(-\frac{43}{85}-\frac{49}{85}i)
Divide -43-49i by 85 to get -\frac{43}{85}-\frac{49}{85}i.
-\frac{43}{85}
The real part of -\frac{43}{85}-\frac{49}{85}i is -\frac{43}{85}.