Evaluate
\frac{169}{45}\approx 3.755555556
Factor
\frac{13 ^ {2}}{3 ^ {2} \cdot 5} = 3\frac{34}{45} = 3.7555555555555555
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)676}\\\end{array}
Use the 1^{st} digit 6 from dividend 676
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)676}\\\end{array}
Since 6 is less than 180, use the next digit 7 from dividend 676 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)676}\\\end{array}
Use the 2^{nd} digit 7 from dividend 676
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)676}\\\end{array}
Since 67 is less than 180, use the next digit 6 from dividend 676 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)676}\\\end{array}
Use the 3^{rd} digit 6 from dividend 676
\begin{array}{l}\phantom{180)}003\phantom{6}\\180\overline{)676}\\\phantom{180)}\underline{\phantom{}540\phantom{}}\\\phantom{180)}136\\\end{array}
Find closest multiple of 180 to 676. We see that 3 \times 180 = 540 is the nearest. Now subtract 540 from 676 to get reminder 136. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }136
Since 136 is less than 180, stop the division. The reminder is 136. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}