Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

10\left(\frac{65}{100}\times 30+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Multiply both sides of the equation by 900, the least common multiple of 90,100. Since 900 is positive, the inequality direction remains the same.
10\left(\frac{13}{20}\times 30+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{65}{100} to lowest terms by extracting and canceling out 5.
10\left(\frac{13\times 30}{20}+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Express \frac{13}{20}\times 30 as a single fraction.
10\left(\frac{390}{20}+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Multiply 13 and 30 to get 390.
10\left(\frac{39}{2}+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{390}{20} to lowest terms by extracting and canceling out 10.
10\left(\frac{39}{2}+\frac{1}{4}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
10\left(\frac{39}{2}+\frac{18}{4}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Multiply \frac{1}{4} and 18 to get \frac{18}{4}.
10\left(\frac{39}{2}+\frac{9}{2}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
10\left(\frac{39+9}{2}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Since \frac{39}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
10\left(\frac{48}{2}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Add 39 and 9 to get 48.
10\left(24+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Divide 48 by 2 to get 24.
10\left(24+\left(1-\frac{13}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{65}{100} to lowest terms by extracting and canceling out 5.
10\left(24+\left(\frac{20}{20}-\frac{13}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Convert 1 to fraction \frac{20}{20}.
10\left(24+\left(\frac{20-13}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Since \frac{20}{20} and \frac{13}{20} have the same denominator, subtract them by subtracting their numerators.
10\left(24+\left(\frac{7}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Subtract 13 from 20 to get 7.
10\left(24+\left(\frac{7}{20}-\frac{1}{4}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
10\left(24+\left(\frac{7}{20}-\frac{5}{20}\right)\left(a-90\right)\right)\geq 9\times 25
Least common multiple of 20 and 4 is 20. Convert \frac{7}{20} and \frac{1}{4} to fractions with denominator 20.
10\left(24+\frac{7-5}{20}\left(a-90\right)\right)\geq 9\times 25
Since \frac{7}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
10\left(24+\frac{2}{20}\left(a-90\right)\right)\geq 9\times 25
Subtract 5 from 7 to get 2.
10\left(24+\frac{1}{10}\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
10\left(24+\frac{1}{10}a+\frac{1}{10}\left(-90\right)\right)\geq 9\times 25
Use the distributive property to multiply \frac{1}{10} by a-90.
10\left(24+\frac{1}{10}a+\frac{-90}{10}\right)\geq 9\times 25
Multiply \frac{1}{10} and -90 to get \frac{-90}{10}.
10\left(24+\frac{1}{10}a-9\right)\geq 9\times 25
Divide -90 by 10 to get -9.
10\left(15+\frac{1}{10}a\right)\geq 9\times 25
Subtract 9 from 24 to get 15.
150+10\times \frac{1}{10}a\geq 9\times 25
Use the distributive property to multiply 10 by 15+\frac{1}{10}a.
150+a\geq 9\times 25
Cancel out 10 and 10.
150+a\geq 225
Multiply 9 and 25 to get 225.
a\geq 225-150
Subtract 150 from both sides.
a\geq 75
Subtract 150 from 225 to get 75.