\frac { 65 \% \times 30 + 25 \% \times 18 + ( 1 - 65 \% - 25 \% ) ( a - 90 ) } { 90 } \geq 25 \%
Solve for a
a\geq 75
Share
Copied to clipboard
10\left(\frac{65}{100}\times 30+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Multiply both sides of the equation by 900, the least common multiple of 90,100. Since 900 is positive, the inequality direction remains the same.
10\left(\frac{13}{20}\times 30+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{65}{100} to lowest terms by extracting and canceling out 5.
10\left(\frac{13\times 30}{20}+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Express \frac{13}{20}\times 30 as a single fraction.
10\left(\frac{390}{20}+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Multiply 13 and 30 to get 390.
10\left(\frac{39}{2}+\frac{25}{100}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{390}{20} to lowest terms by extracting and canceling out 10.
10\left(\frac{39}{2}+\frac{1}{4}\times 18+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
10\left(\frac{39}{2}+\frac{18}{4}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Multiply \frac{1}{4} and 18 to get \frac{18}{4}.
10\left(\frac{39}{2}+\frac{9}{2}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
10\left(\frac{39+9}{2}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Since \frac{39}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
10\left(\frac{48}{2}+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Add 39 and 9 to get 48.
10\left(24+\left(1-\frac{65}{100}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Divide 48 by 2 to get 24.
10\left(24+\left(1-\frac{13}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{65}{100} to lowest terms by extracting and canceling out 5.
10\left(24+\left(\frac{20}{20}-\frac{13}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Convert 1 to fraction \frac{20}{20}.
10\left(24+\left(\frac{20-13}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Since \frac{20}{20} and \frac{13}{20} have the same denominator, subtract them by subtracting their numerators.
10\left(24+\left(\frac{7}{20}-\frac{25}{100}\right)\left(a-90\right)\right)\geq 9\times 25
Subtract 13 from 20 to get 7.
10\left(24+\left(\frac{7}{20}-\frac{1}{4}\right)\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
10\left(24+\left(\frac{7}{20}-\frac{5}{20}\right)\left(a-90\right)\right)\geq 9\times 25
Least common multiple of 20 and 4 is 20. Convert \frac{7}{20} and \frac{1}{4} to fractions with denominator 20.
10\left(24+\frac{7-5}{20}\left(a-90\right)\right)\geq 9\times 25
Since \frac{7}{20} and \frac{5}{20} have the same denominator, subtract them by subtracting their numerators.
10\left(24+\frac{2}{20}\left(a-90\right)\right)\geq 9\times 25
Subtract 5 from 7 to get 2.
10\left(24+\frac{1}{10}\left(a-90\right)\right)\geq 9\times 25
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
10\left(24+\frac{1}{10}a+\frac{1}{10}\left(-90\right)\right)\geq 9\times 25
Use the distributive property to multiply \frac{1}{10} by a-90.
10\left(24+\frac{1}{10}a+\frac{-90}{10}\right)\geq 9\times 25
Multiply \frac{1}{10} and -90 to get \frac{-90}{10}.
10\left(24+\frac{1}{10}a-9\right)\geq 9\times 25
Divide -90 by 10 to get -9.
10\left(15+\frac{1}{10}a\right)\geq 9\times 25
Subtract 9 from 24 to get 15.
150+10\times \frac{1}{10}a\geq 9\times 25
Use the distributive property to multiply 10 by 15+\frac{1}{10}a.
150+a\geq 9\times 25
Cancel out 10 and 10.
150+a\geq 225
Multiply 9 and 25 to get 225.
a\geq 225-150
Subtract 150 from both sides.
a\geq 75
Subtract 150 from 225 to get 75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}